• Facebook
  • LinkedIn
  • KONTAKT
  • ANNONCERING
  • OM KEMIFOKUS
  • PARTNERLOGIN

KemiFOKUS

Fokus på kemi

  • Analytisk kemi
  • Arbejdsmiljø/Indeklima
  • Biokemi
  • Biologi
  • Bioteknologi
  • Branchenyt
  • Energi
  • Fødevarekemi
  • Historisk kemi
  • Kemiteknik
  • Kemometri
  • Klikkemi
  • Klima og miljø
  • Lovgivning og patenter
  • Medicinalkemi
  • Nanoteknologi
  • Organisk kemi
  • Artikler fra Dansk Kemi

BioteknologiMedicinalkemi01. 11. 2013 | Katrine Meyn

Diabetes og naturstoffer

BioteknologiMedicinalkemi01. 11. 2013 By Katrine Meyn

Traditionel plantebaseret medicin viser en række lovende aktiviteter, der umiddelbart har interesse i kampen mod type 2 diabetes epidemien, men der mangler statistisk validerede kliniske undersøgelser.

Læs originalartiklen her

Artiklen har været bragt i Dansk Kemi nr. 11, 2013 og kan læses uden illustrationer, strukturer og ligninger herunder. Se relaterede artikler nederst på siden.

Af Kathrine Bisgaard Christensen og Lars Porskjær Christensen, Institut for Kemi-, Bio- og Miljøteknologi, Det Tekniske Fakultet, Syddansk Universitet

I denne artikel omtales nogle af de planter og deres bioaktive metabolitter, der har vist en signifikant effekt på diabetes risikofaktorer. Der gives samtidig et bud på fremtidens naturstoffer mod diabetes. Artiklen er en fortsættelse af Konventionel og traditionel medicin mod diabetes.

Bukkehorn
Frøene fra bukkehorn (Trigonella foenum-graecum, Fabaceae) anvendes som krydderi i karryblandinger, men også som naturmedicin i Indien, Nordafrika og Middelhavsregionen mod diabetes samt fordøjelses- og stofskifteproblemer [1].
Kontrollerede kliniske forsøg med bukkehorn imod diabetes er få, men viser en forbedret glykæmisk kontrol og nedsat insulinresistens hos type 2 patienter [2]. Der findes mange dyreforsøg med ekstrakter af bukkehorn, der viser øget plasma-insulin, en lavere absorption af glukose fra tarmen og forbedret kolesterolniveau i lighed med mange af de konventionelle antidiabetiske præparater [1,3,4].
Flere naturstoffer fra bukkehorn har vist antidiabetiske effekter (figur 1). Eksempelvis, 4-hydroxyisoleucin, der udgør 80% af de frie aminosyrer i frøene, kan stimulere insulinsekretion fra β-celler in vivo, Effekten er afhængig af en vis mængde glukose, hvilket er positivt, da det mindsker risikoen for hypoglykæmi [5]. Steroid saponinen diosgenin kan stimulere fedtcelle-differentiering samt hæmme ekspressionen af flere gener relateret til inflammation i fedtceller, hvilket reducerer insulinresistens in vivo [6]. Endvidere tillægges diosgenin positive effekter på plasma-kolesterol in vivo. Det høje fiberindhold i bukkehorn består primært af polysakkaridet galactomannan, der bevirker en forsinket gastrisk tømning (gastroparese) og dermed også har en blodsukkersænkende effekt.
Bukkehorn har været brugt i årtusinder som plantemedicin og bedømmes da også som ikke toksisk og uden bivirkninger i flere undersøgelser [1]. Der er derfor ikke nogen undskyldning for ikke at teste bukkehorn i flere og større kontrollerede kliniske forsøg, for at få identificeret de reelle antidiabetiske mekanismer.

Balsampære
Frugten fra balsampære (Momordica charantia, Curcubiaceae) har været anvendt i fødevarer og som plantemedicin i Kina i de sidste 600 år. Som traditionelt antidiabetisk middel har balsampære også været anvendt i Mellemøsten, Pakistan, Indien, og Latinamerika [7].
En blodsukkersænkende effekt af balsampære er påvist både i celle- og dyreforsøg samt kliniske studier [8-10]. Virkningsmekanismerne for præparationer af balsampære er mange, herunder stimulering af insulinsekretionen fra β-celler, beskyttelse af β-cellerne, regulering af glukoseabsorption i tarmen, forøgelse af glukoseoptag i muskelceller, øget glukoseoxidation samt hæmning af enzymer involveret i glukoneogenese [11] (figur 2). Endvidere er aktivering af PPARα og γ observeret for et balsampæreekstrakt, hvor (9Z,11E,13E)-octadeca-9,11,13-triensyre (α-eleostearinsyre) (figur 3) blev identificeret som aktivator af PPARα [12]. Aktivering af PPARα og γ fører til forbedring af dyslipidæmi og en øget insulinfølsomhed.
Over 200 naturstoffer er blevet isoleret fra balsampære, og nogle af disse bliver tillagt antidiabetiske aktiviteter (figur 3), heriblandt flere polypeptider, bl.a. polypeptid-P, der har insulinlignende egenskaber. Endvidere har triterpenoiderne 5β,19-epoxy-3β,25-dihydroxycucurbita-6,23(E)-dien og 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al udvist hypoglykæmisk effekt in vivo. Mekanismen er ukendt [13], men kunne være forbundet med stimulering af insulinsekretion fra β-celler, som tilfældet er for de beslægtede triterpenoider momordicin I og II og kuguaglykosid G [14]. Triterpenoiderne oleanolsyre 3-O-glukuronid og momordin Ic udviser derimod deres antihyperglykæmiske effekt ved at inhibere absorption af glukose fra tarmen [15].
I et Cochrane review konkluderes det, at der er utilstrækkelige beviser for anvendelsen af balsampære mod type 2 diabetes. Det skyldes, at kun fire af mange kliniske forsøg med balsampære opfyldte kravene fra Cochrane samt at forskningen i balsampære bærer præg af manglende standardisering mht. præparationer og kvalitetskontrol generelt. Det gør desværre de observerede antidiabetiske effekter af planten noget usikre [16].

Sukkerplante
Præparationer af bladene fra sukkerplante eller stevia (Stevia rebaudiana, Asteraceae) har været brugt traditionelt mod diabetes i Syd- og Centralamerika. Som plantens navn antyder, indeholder den naturlige sødemidler, især steviosid, der er 200-300 gange så sødt som sukrose. De biologiske aktiviteter af stevia og dets metabolitter inkluderer bl.a. blodsukker- og blodtrykssænkende effekt, effekt på insulinsekretion og insulinfølsomhed, antiinflammatoriske, anticancer og antioxidant effekter. De vigtigste antidiabetiske metabolitter i stevia er diterpenglukosidet steviosid samt aglykonerne steviol og isosteviol (figur 4), der dannes efter mikrobiel nedbrydning af steviosid i tarmen [17].
Steviosid kan sænke blodsukkeret hos type 2 diabetikere og i diabetiske rottemodeller. Steviosid øger insulinsekretionen, optimerer glukoseudnyttelsen i meget lidt insulinfølsomme væv og kan hæmme ekspressionen af phosphoenol pyruvat carboxykinase (PEPCK), der er et hastighedsregulerende enzym for glykoneogenese i leveren [18]. In vitro og in vivo studier har desuden vist, at stimuleringen af insulinsekretionen er glukoseafhængig, hvilket minimerer risikoen for hypoglykæmi [19]. Desuden har steviosid en markant effekt på insulinfølsomhed [17].
I modsætning til steviosid, så er aglykonen steviol i stand til at reducere glukoseoptaget i tarmen, ligesom den også er i stand til at øge insulinsekretionen fra β-celler in vitro. Isosteviol har også vist lovende aktivitet mht. blodsukkerregulering og insulinsensitivitet in vivo. En oversigt over stevia-metabolitternes aktiviteter i relation til regulering af plasma-glukose-niveau in vivo er angivet i figur 5 [17]. Stevia-ekstrakter og -metabolitter er således i fokus som nye alternative midler mod diabetes og relaterede lidelser.

Fremtidens naturstoffer mod diabetes?
Indenfor de konventionelle antidiabetiske præparater er der fokus på stoffer, der er selektive hæmmere af natrium-glukose-kotransportør 2 (SGLT2), dvs. de blokerer nyrens glukosereabsorption, og dermed sænkes blodsukkerniveauet. Endvidere er der fokus på PPAR-modulatorer, der har affinitet både for PPARα og γ, som f.eks. er tilfældet for ekstrakter af balsampære. Der er dog flere udfordringer med agonister af denne type pga. alvorlige bivirkninger [20].
I en del af vores forskning indenfor antidiabetiske naturstoffer har vi fokus på PPAR-receptorerne, især PPARγ. De alvorlige bivirkninger ved PPARγ agonister kan undgås, hvis man går efter partielle agonister. I denne sammenhæng har vi identificeret flere alkamider fra rød solhat (Echinacea purpurea), polyacetylener fra gulerødder (Daucus carota) og polyphenoler fra hyldeblomst (Sambucus nigra) (figur 6). De viser lovende resultater mht. effekt på glukoseoptag i både muskel- og fedtceller. Resultaterne er så nye, at de endnu ikke er offentliggjort.
Bailey og Day forudså i 1989 at fremtidens antidiabetiske stoffer skulle komme fra bønner, kål, gulerødder, kartofler og lignende fødevareplanter [21]. Vi er et lille skridt på vejen med gulerødderne, så måske havde de ret? Ellers er der mange andre antidiabetiske stoffer på vej frem. De findes naturligt i vores daglige kost, f.eks. fedtsyrer fra olivenolie, der kan regulere GLP-1, quercetin og rutin, der findes i de fleste vegetabilier og kan regulere hhv. glukoseabsorption i tarmen og påvirke insulintolerancen for β-celler samt inhibere α-glukosidase. Endelig er der capsaicin (figur 6), der findes i forskellige peberfrugter, og som bl.a. kan regulere insulinresistens. Så der er rigelig inspiration at hente i naturen til fremtidens antidiabetiske stoffer uden bivirkninger.

Referencer
1. Al-Habori M, Raman A. Antidiabetic and hypocholesterolaemic effects of fenugreek. Phytother. Res. 1998; 12: 233-242.
2. Madar Z, Abel R, Samish S, Arad J. Glucose-lowering effect of fenugreek in non-insulin dependent diabetics. Eur. J. Clin. Nutr. 1988; 42: 51-54.
3. Gad MZ, El-Sawalhi MM, Ismail MF, El-Tanbouly ND. Biochemical study of the anti-diabetic action of the Egyptian plants fenugreek and balanites. Mol. Cell Biochem. 2006; 281: 173-183.
4. Raju J, Gupta D, Rao AR, Yadava PK, Baquer NZ. Trigonella foenum-graecum (fenugreek) seed powder improves glucose homeostasis in alloxan diabetic rat tissues by reversing the altered glycolytic, gluconeogenic and lipogenic enzymes. Mol. Cell Biochem. 2001; 224: 45-51.
5. Sauvaire Y, Petit P, Broca C, Manteghetti M, Baissac Y, Fernandez-Alvarez J, Gross R, Roye M, Leconte A, Gomis R, Ribes G. 4-Hydroxyisoleucine: a novel amino acid potentiator of insulin secretion. Diabetes 1998; 47: 206-210.
6. Uemura T, Hirai S, Mizoguchi N, Goto T, Lee JY, Taketani K, Nakano Y, Shono J, Hoshino S, Tsuge N, Narukami T, Takahashi N, Kawada T. Diosgenin present in fenugreek improves glucose metabolism by promoting adipocyte differentiation and inhibiting inflammation in adipose tissue. Mol. Nutr. Food Res. 2010; 54: 1596-1608.
7. Marles RJ, Farnsworth NR. Antidiabetic plants and their active constituents. Phytomedicine 1995; 2: 137-189.
8. Rathi SS, Grover JK, Vats V. The effect of Momordica charantia and Mucuna pruriens in experimental diabetes and their effect on key metabolic enzymes involved in carbohydrate metabolism. Phytother. Res. 2002; 16: 236-243
9. Leatherdale BA, Panesar RK, Singh G, Atkins TW, Bailey CJ, Bignell AH. Improvement in glucose tolerance due to Momordica charantia (karela). Br. Med. J. 1981; 282: 1823-1824.
10. Welihinda J, Karunanayake EH, Sheriff MH, Jayasinghe KS. Effect of Momordica charantia on the glucose tolerance in maturity onset diabetes. J. Ethnopharmacol. 1986; 17: 277-282.
11. Prabhakar PK, Doble M. Mechanism of action of natural products used in the treatment of diabetes mellitus. J. Integr. Med. 2011; 17: 563-574.
12. Chuang CY, Hsu C, Chao CY, Wein YS, Kuo YH, Huang CJ. Fractionation and identification of 9c,11t,13t-conjugated linolenic acid as an activator of PPARα in bitter gourd (Momordica charantia L.) J. Biomed. Sci. 2006; 13: 763-772.
13. Harinantenaina L, Tanaka M, Takaoka S, Oda M, Mogami O, Uchida M, Asakawa Y. Momordica charantia constituents and antidiabetic screening of the isolated major compounds. Chem. Pharm. Bull. 2006; 54: 1017-1021.
14. Keller AC, Ma J, Kavalier A, He K, Brillantes AM, Kennelly EJ. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine 2011; 19: 32-37.
15. Matsuda H, Li Y, Murakami T, Matsumura N, Yamahara J, Yoshikawa M. Antidiabetic principles of natural medicines. III. Structure-related inhibitory activity and action mode of oleanolic acid glycosides on hypoglycemic activity. Chem. Pharm. Bull. 1998; 46: 1399-1403.
16. Ooi CP, Yassin Z, Hamid TA. Momordica charantia for type 2 diabetes mellitus (Review). The Cochrane Library 2012; 8: 1-31.
17. Chatsudthipong V, Muanprasat C. Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol. Ther. 2009; 121: 41-54.
18. Chen TH, Chen SC, Chan P, Chu YL, Yang HY, Cheng JT. Mechanism of the hypoglycemic effect of stevioside, a glycoside of Stevia rebaudiana. Planta Med. 2005; 71: 108-113
19. Jeppesen PB, Gregersen S, Alstrup KK, Hermansen K. Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: studies in the diabetic Goto-Kakizaki (GK) rats. Phytomedicine 2002: 9: 9-14.
20. Stein SA, Lamos EM, Davis SN. A review of the efficacy and safety of oral antidiabetic drugs. Expert Opin. Drug Saf. 2013; 12: 153-175
21. Bailey C, Day C. Traditional plant medicines as treatments for diabetes. Diabetes Care 1989; 12: 553-564.

Figur 1. De potentielt antidiabetiske stoffer fra bukkehorn (Trigonella foenum-graecum).

Figur 2. Mulige virkningsmekanismer for balsampære (Momordica charantica) til regulering af blodsukkeret [11].

Figur 3. De potentielt antidiabetiske naturstoffer fra balsampære (Momordica charantia).

Figur 4. Antidiabetiske metabolitter fra sukkerplante (Stevia rebaudiana).

Figur 5. De potentielle virkningsmekanismer for stevia-metabolitter til regulering af plasma-glukose (blodsukker) [17].

Figur 6. Eksempler på naturstoffer fra velkendte medicinplanter og vegetabilier, der har vist lovende antidiabetiske effekter, som kan give inspiration til nye lægemidler til forebyggelse og behandling af diabetes.

Bukkehorn (Trigonella foenum-graceum).

Sukkerplante (Stevia rebaudiana) .

Balsampære (Momordia charantia). Til venstre den umodne frugt og til højre den modne frugt.

Skrevet i: Bioteknologi, Medicinalkemi

Seneste nyt fra redaktionen

Hofmeister – nem at anvende, svær at forstå

Artikler fra Dansk KemiFødevarekemiTop23. 06. 2025

Franz Hofmeister opløste æggehvide i vandige saltopløsninger. En artikel fra 1888 beskriver, hvordan nogle ioner får proteiner til at udfælde, mens andre ioner har den modsatte effekt. Fødevarekemien bruger stadig Hofmeister, men langt mere nuanceret. Artiklen har været bragt i Dansk Kemi nr. 3,

Udvinding af fødevareproteiner fra kløvergræs ved membranteknologi

AktueltArtikler fra Dansk KemiFødevarekemi17. 06. 2025

Hvis kløvergræs skal kunne anvendes som ny ressource til udvinding af fødevareproteiner, kan membranteknologi være vejen frem. Artiklen har været bragt i Dansk Kemi nr. 3, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Mette Lübeck, Mads

Trinatriumhexafluo… hvad for noget?

AktueltArtikler fra Dansk KemiHistorisk kemi09. 06. 2025

Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) I år fejrer man internt i IUPAC 20-året for offentliggørelsen af The Red Book (i det følgende blot "RB2005") med anbefalinger vedrørende

Prisen på grisen: Hvad koster oprensning af beskidt CO2?

AktueltArtikler fra Dansk KemiGrøn omstilling02. 06. 2025

Hvor rent er CO2 fra CO2-fangst? Og hvor dyrt er det at oprense CO2? Denne artikel giver indsigt i nogle af udfordringerne ved at implementere en global CO2 infrastruktur. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs

Der er brug for lange måleserier af miljøparametre

AktueltArtikler fra Dansk KemiKlima og miljø26. 05. 2025

Kontinuerlige, kvalitetssikrede målinger af kemiske, fysiske og biologiske miljøparametre giver uundværlig information. Det gælder også for Grønland. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen

Chemical ionization mass spectrometry in atmospheric studies

AktueltAnalytisk kemiArtikler fra Dansk Kemi19. 05. 2025

Advances in chemical ionization mass spectrometry can improve our understanding of atmospheric composition. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Varun Kumar, Institut for

Gamle processer, nye muligheder: Nyt kemisk-biologisk koncept til CO2-fangst og omdannelse

AktueltArtikler fra Dansk KemiBioteknologi14. 05. 2025

Oldgamle CO2-ædende mikroorganismer kan fange CO2 direkte fra skorstensrøg og omdanne kulstoffet til grønne molekyler. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Mads Ujarak Sieborg1 og

Centrotherm clean solutions bliver til Pfeiffer Vacuum+Fab Solutions

AktueltBranchenyt14. 05. 2025

Busch Group annoncerer, at deres brand centrotherm clean solutions bliver en del af Pfeiffer Vacuum+Fab Solutions. Fra september 2025 vil gasreduktionssystemerne til Semicon-industrien, som tidligere blev tilbudt under dette mærke, blive integreret i Pfeiffer-porteføljen og fremover være

I dag får professor Per Halkjær Nielsen Videnskabernes Selskabs Guldmedalje

Branchenyt14. 05. 2025

For blot fjerde gang i dette årtusinde uddeles Videnskabernes Selskabs Guldmedalje. Det sker i dag, hvor bakterieforsker Per Halkjær Nielsen, professor ved Institut for Kemi og Biovidenskab ved Aalborg Universitet, får den fine hæder for sit livsværk og sin holdånd. Han er manden, der kortlægger

Atmosfærisk transport af PFAS til Højarktis

AktueltArtikler fra Dansk KemiKlima og miljø28. 04. 2025

Tilstedeværelsen af PFAS-forbindelser skyldes ikke kun lokale kilder, men de kan langtransporteres i luften til selv meget fjerntliggende arktiske egne. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen

Tilmeld Nyhedsbrev

Tilmeld dig til dit online branchemagasin/avis





Få fuld adgang til indlægning af egne pressemeddelelser...
Læs mere her

/Nyheder

  • DENIOS ApS

    NYHED: Her er fremtidens opbevaring af farlige stoffer

  • Busch Vakuumteknik A/S

    MRPC modtager “Innovation in Vacuum Busch Award”

  • DENIOS ApS

    Dette er, hvad der sker, når batterier bryder i brand

  • Busch Vakuumteknik A/S

    Busch Vacuum Solutions præsenterer den intelligente TYR PLUS kapselblæser

  • Dansk Laborant-Forening/HK

    Laboranter er nysgerrige på ny teknik

  • DENIOS ApS

    Sådan udnytter du den stille periode i sommerferien

  • Busch Vakuumteknik A/S

    Sommer vedligeholdelsestips til din vakuumpumpe: 6 gode anbefalinger

  • DENIOS ApS

    Så er det sidste chance

  • DENIOS ApS

    Sikker tøndehåndtering starter her

  • LABDAYS – Fagmesse for Laboratorieteknik

    LabDays Aarhus 2025 – SOLD OUT

Vis alle nyheder fra vores FOKUSpartnere ›

Seneste Nyheder

  • Hofmeister – nem at anvende, svær at forstå

    23.06.2025

  • Udvinding af fødevareproteiner fra kløvergræs ved membranteknologi

    17.06.2025

  • Trinatriumhexafluo… hvad for noget?

    09.06.2025

  • Prisen på grisen: Hvad koster oprensning af beskidt CO2?

    02.06.2025

  • Der er brug for lange måleserier af miljøparametre

    26.05.2025

  • Chemical ionization mass spectrometry in atmospheric studies

    19.05.2025

  • Gamle processer, nye muligheder: Nyt kemisk-biologisk koncept til CO2-fangst og omdannelse

    14.05.2025

  • Centrotherm clean solutions bliver til Pfeiffer Vacuum+Fab Solutions

    14.05.2025

  • I dag får professor Per Halkjær Nielsen Videnskabernes Selskabs Guldmedalje

    14.05.2025

  • Atmosfærisk transport af PFAS til Højarktis

    28.04.2025

  • Biotek-firma bag fedme-medicin på tabletform har lagt en klar plan om samarbejde eller opkøb

    21.04.2025

  • Dansk virksomhed vil vende produktionen af ammoniak på hovedet – ned i en lille container

    07.04.2025

  • En EU-historie om nomenklatur – og ginseng til hunde, katte og heste!

    01.04.2025

  • Tysk elektrolyseanlæg er som det første i verden blevet integreret direkte i kemisk produktion

    31.03.2025

  • Dansk innovation blander sig i toppen over lande med de fleste patentansøgninger

    31.03.2025

Alle nyheder ›

Læs Dansk Kemi online

Annoncering i Dansk Kemi

KONTAKT

TechMedia A/S
Naverland 35
DK - 2600 Glostrup
www.techmedia.dk
Telefon: +45 43 24 26 28
E-mail: info@techmedia.dk
Privatlivspolitik
Cookiepolitik