• Facebook
  • LinkedIn
  • KONTAKT
  • ANNONCERING
  • OM KEMIFOKUS
  • PARTNERLOGIN

KemiFOKUS

Fokus på kemi

  • Analytisk kemi
  • Arbejdsmiljø/Indeklima
  • Biokemi
  • Biologi
  • Bioteknologi
  • Branchenyt
  • Energi
  • Fødevarekemi
  • Historisk kemi
  • Kemiteknik
  • Kemometri
  • Klikkemi
  • Klima og miljø
  • Lovgivning og patenter
  • Medicinalkemi
  • Nanoteknologi
  • Organisk kemi
  • Artikler fra Dansk Kemi

Bioteknologi01. 05. 2009 | Katrine Meyn

Enzymer udnytter kaos til grundig afsøgning af overflader

Bioteknologi01. 05. 2009 By Katrine Meyn

Enzymer er langt mere effektive til at finde substratmolekyler end forventet ud fra en model af Brownske bevægelser.

Læs originalartiklen her

Artiklen har været bragt i Dansk Kemi nr. 5, 2009 og kan læses uden illustrationer, strukturer og ligninger herunder. Se relaterede artikler nederst på siden.

Af Rasmus Hansen1, Thomas H. Callisen2 & Ole Hassager1
1Institut for Kemiteknik, Dansk Polymer Center, DTU. 2Novozymes R&D

Enzymer er naturens molekylære katalysatorer. I biologiske organismer forøger enzymer hastighederne, hvormed kemiske reaktioner foregår. Uden enzymer ville liv, som vi kender det, ikke kunne eksistere. Enzymer er udviklet på den evolutionære tidsskala til at katalysere specifikke kemiske reaktioner. Mennesker har siden bioteknologiens begyndelse været interesseret i at benytte naturens udviklede molekyler i en teknologisk sammenhæng. Således afhænger mange teknologiske processer af mobilitet af enzymer på substratoverflader*, herunder kan nævnes biologiske vaskemidler, fødevareproduktion samt anvendelser af mikro- og nanochips i sygdomsdiagnose. Vores viden om de underliggende mekanismer for enzymers virke er endnu mangelfuld. Reduktionistisk tankegang i forskning, såvel som nye avancerede eksperimentelle teknikker, har ført til en dybere forståelse af enzymers dynamik på mikroskopisk skala1. Men hvordan opfører enzymer sig på den større mesoskopiske skala?
Et interessant og påtrængende spørgsmål i moderne biofysisk forskning er, om enzymer, ud over at være evolutionært udviklet til substratspecificitet, desuden er optimeret til andre formål på en større tidsskala. Ved at anvende nye avancerede eksperimentelle teknikker har forskere fra Novozymes A/S nu optaget bevægelsen af et enkelt enzymmolekyle på en substratoverflade. De specielle bevægelsesmønstre afslører, at enzymer udnytter kaos til at udføre en grundigere afsøgning af en overflade end tidligere antaget.
Tekniske termer (*)
Substrat: Det molekyle enzymet virker på. Enzymer katalyserer omdannelsen af substrat til produkt ved en kemisk reaktion.
Lipase: Enzym der katalyserer spaltningen af fedtstoffer (lipider) i vand.
Diffusion: Transport af stof eller energi på basis af molekylers kaotiske bevægelser.
Mærkning: For at kunne spore enzymet anvendes fluoroforer og ”kvanteprikker”.

Enzymers kaotiske kravlen trodser klassisk forståelse
I det tidlige 19. århundrede opdagede Robert Brown pollenpartiklers kaotiske bevægelser i vand (se boks: Deterministisk kaos), nu almen kendt under benævnelsen Brownske bevægelser. En partikel, der undergår Brownske bevægelser (Brownsk partikel), bliver bombarderet med vandmolekyler fra alle sider. Statistisk set forøges afstanden x partiklen har bevæget sig proportionalt med kvadratroden af tiden t; x ~ t1/2. Denne lov, som Albert Einstein beviste i sin forklaring af Brownske bevægelser i 1905, har lige siden skabt grundlag for analyser af små partiklers kaotiske bevægelser i opløsning. Denne teori var derved også udgangspunktet, da eksperimenter med lipases* bevægelser på substratoverflader, foretaget af en gruppe forskere på Novozymes A/S [1], påviste, at enzymet flytter sig som funktion af tiden ifølge relation; x ~ t0.26. Altså med en eksponent 0.26 omtrent halvt så stor som for Brownske partikler. Denne langsommere type bevægelse står derved i kontrast til Brownske bevægelser og klassisk diffusionsteori*, og kaldes anormal subdiffusion.

Tiltrækningsenergien mellem enzymet og overfladen forklarer anomali
Det viste sig, at eksponenten 0.26 er uafhængig af graden af enzymets katalytiske aktivitet samt de eksperimentelle mærkningsprocedurer*. Eksponenten viste såkaldt universalitet. Ved anvendelse af den eksperimentelt opdagede universalitet, i en teoretisk model for anormal subdiffusion, antydes, at det er den strukturelle kompleksitet af enzymet, der bestemmer overflademobiliteten. Enzymets komplicerede struktur kan give anledning til et bredt spektrum af tiltrækningsenergier mellem enzymet og overfladen. Det følgende ujævne energilandskab kan give anledning til den observerede anormale subdiffusion. Denne opdagelse bidrager med dybere forståelse af enzymers dynamik på substratoverflader og danner grundlag for en konsistent fremtidig ramme til eksperimentel karakterisering af enzymers mobilitet. Men er der nogle fordele ved den langsommere bevægelse?

Deterministisk kaos
Determinisme betyder lovmæssighed. Betegnelsen anvendes i naturvidenskaben om systemer, der er underlagt eksakte love uden tilfældige påvirkninger (støj). Eksempler på deterministiske systemer er Newtons love fra den klassiske mekanik og Maxwells love for elektrodynamikken. Deterministisk kaos er dynamik, der forekommer tilfældig på trods af, at det observerede system er deterministisk og derved ikke underlagt tilfældige påvirkninger. Deterministisk kaotiske systemer forekommer regelmæssige på korte tidsskalaer, men med tiden bliver regelmæssighed udvisket, og systemets kaotiske natur medfører tilsyneladende tilfældighed. Tænk for eksempel på en terning der forlader din hånd på vej imod spillebordet. Først forudsigelighed – dernæst tilfældighed – klart deterministisk (Newtons 2. lov).

Brownske bevægelser kontra anormal subdiffusion
Albert Einstein forklarede, i en af sine berømte artikler fra 1905, hvorfor Brownske partikler følger relationen; x ~ t1/2. Einstein havde indsigt i universets – og derved også vandets – opdeling i molekyler, der kolliderer med partiklen. Hans forklaring af Browns forsøg er baseret på antagelsen om eksistens af en mikroskopisk tidsskala t, der refererer til den tid, der typisk går imellem kollisioner mellem partiklen og vandmolekyler. Grundet molekylært kaos vil partiklens bevægelse forekomme uregelmæssig og tilfældig. Hvis man venter lang tid nok (T = stort tal x t) vil partiklen typisk have bevæget sig en givet afstand l i en tilfældig retning. Tiden T siges at separere mikro- og makroskopisk skala, regelmæssighed og tilfældighed. Man kan nu forestille sig at betragte bevægelsen af partiklen som skridt af afstanden l i tilfældige retninger, hvert T’ende sekund. I teoretisk fysik kaldes dette en renormalisering af tid og rum. Det er vigtigt at understrege, at vores eneste antagelse er eksistens af en tidsskala t for molekylære kollisioner samt en tilhørende længdeskala l, hvorpå molekylært kaos har udvisket forudsigeligheden af partiklens retning. På basis af disse antagelser kan man ved brug af simpel sandsynlighedsregning beregne Browns observerede lov, x ~ t1/2. For at enhederne stemmer kræves, at proportionalitetskonstanten har størrelsesorden lT-1/2. Den fundamentale forskel på Brownske bevægelser og anormal subdiffusion er, at der for anormal subdiffusion ikke eksisterer nogen mikroskopisk tidsskala, hvilket resulterer i at det mikroskopiske og det makroskopiske ikke kan separeres. Fraværet af denne mikroskopiske tidsskala skyldes, at den begrænsende faktor for dynamikken ikke længere er kollisioner mellem vandmolekylerne og partiklen. Dynamikken er nu styret af et ujævnt energilandskab, der stammer fra tiltrækning mellem partiklen og overfladen. Energien spænder over så bredt et spektrum, at der ikke eksisterer en typisk tidsskala – partiklen kan ved den rette orientering og konfiguration sidde fast et bestemt sted på overfladen på ubestemt tid. Sammenlignet med Brownske bevægelser medfører dette en langsommere dynamik bestemt ved x ~ ta, hvor eksponenten a < 0.5. Partiklen bremses, så at sige, mens den bumper gennem et ujævnt energilandskab.

Enzymet er en tålmodig opdager
Fra et molekylært evolutionsmæssigt perspektiv lader det til, at naturen har udviklet kemiske katalysatorer, der udnytter molekylært kaos til fordelagtig dækning af overflader. Det er på basis af teorien for tilfældige bevægelser (stokastisk dynamik) muligt at udregne kompaktheden C af lipasens bane; C ~ 1/(alnt), hvor a er den ovenfor omtalte eksponent. Vi bemærker to ting fra dette udtryk: 1) Kompaktheden ses at aftage som funktion af tiden. 2) Under sammenligning med Brownske bevægelser (a = 0,5) ses, at den langsommere dynamik af anormal subdiffusion, grundet den lavere eksponent a = 0,26, er assisteret af en mere kompakt dækning af overflader (se også figuren). Af denne grund kan lipase med rette kaldes en “tålmodig opdager”. Hvis vi forestiller os en substratoverflade, hvor der placeres lipaser, kan man tilsvarende beregne sandsynligheden for at et bestemt område på overfladen besøges af et lipase molekyle. Resultatet, som dog er en anelse mere matematisk kompliceret, viser at denne sandsynlighed forøges med aftagende eksponent. Altså vil den anormale subdiffusion, ved sammenligning med Brownske bevægelser, medføre at substratmolekyler oftere møder et enzym. Vi siger, at substratets overlevelsessandsynlighed aftager. Enzymet udnytter derved det kaotiske miljø i vandet samt tiltrækning til overfladen, til at afsøge overfladen på en grundigere måde end først antaget på basis af teorien for Brownske bevægelser.

Fremtiden
Resultaterne har givet fornyet indsigt i enzymers dynamik på makroskopiske tidsskalaer og antages på sigt at assistere optimeret design af bioteknologiske processer. Resultaterne giver desuden anledning til flere lovende veje for fremtidige eksperimentelle og teoretiske studier af mobilitet af komplekse biologiske makromolekyler på overflader. Det er sandsynligt at enzymforskning i det 21. århundrede vil klarlægge yderligere detaljer af de molekylære mekanismer der ligger bag disse kompakte bevægelsesmønstre.

Rasmus Hansen takker Novozymes A/S for økonomisk support.

1) Nye udviklinger flytter konstant grænsen for definitionen af mikroskopisk skala. I dag er 10-15 s og 10-10 m passende tids- og rumskala. Mesoskopisk skala er betegnelsen for en mellemliggende tids- og rumskala, hvor atomare detaljer er underordnede, mens statistisk midlede størrelser såsom diffusionsflux og koncentration kan defineres.

Referencer
1. A. W. Sonesson, U. M. Elofsson, T. H. Callisen & H. Brismar, Tracking Single Lipase Molecules on a Trimyristin Substrate Surface Using Quantum Dots, Langmuir 2007, 23, 8352-8356.

Til venstre: Det ujævne energilandskab, der stammer fra energetisk tiltrækning mellem enzymet og overfladen giver anledning til den kompakte afsøgning af overfladen: Enzymet er en “tålmodig opdager”.
Til højre: Det jævne energilandskab for frie Brownske partikler giver anledning til en mindre kompakt afsøgning af overfladen.

Skrevet i: Bioteknologi

Seneste nyt fra redaktionen

2026-udgaven af Torkil Holm Prisen måtte deles af to markante forskningsprofiler

BranchenytTop03. 02. 2026

Torkil Holm Prisen, der tildeles yngre forskere indenfor kemien, måtte i år deles i to; til professor Luca Laraia fra DTU og Senior Principal Scientist Anne Louise Bank Kodal fra Novo Nordisk A/S Professor Luca Laraia modtog prisen for sin enestående indsats i at forstå og målrette de

Italienskfødt, dansk-bosat forsker modtager årslegat for at sætte molekyler på menuen

AktueltBranchenyt27. 01. 2026

I år det 5 millioner store Villum Kann Rasmussens Årslegat til en forsker, der på flere måder har bygget broer. Professor Milena Corredig fra Aarhus Universitet bygger bro mellem molekyler og måltider, og selv har hun rødder med fra Italien, hvor hun er født, men er i dag bosat her i

To år med enhedspatentet og Enhedspatentdomstolen

AktueltArtikler fra Dansk KemiLovgivning og patenter26. 01. 2026

Enhedspatentsystemet har nu været i kraft i to år, og de nye muligheder bliver brugt. Artiklen har været bragt i Dansk Kemi nr. 6, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Anders Heebøll-Nielsen, partner, European Patent Attorney,

Materialer til konstruktion af små modulære atomreaktorer med smeltet fluorid-salt

AktueltArtikler fra Dansk KemiEnergi20. 01. 2026

4. generations atomkraftreaktorer, der bruger smeltet salt som brændsel eller kølemiddel, er ved at blive udviklet i Danmark, men hvad kan vi bygge dem af? Artiklen har været bragt i Dansk Kemi nr. 6, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen

Er der salat i solcreme?

AktueltArtikler fra Dansk KemiHistorisk kemi12. 01. 2026

Afhængigt af ens ophold udendørs, solindfaldet dér og ens lysfølsomhed kan man få brug for solcreme på alle tider af året, så her skriver vi også om det i november. Som ved de fleste andre kemibaserede produkter kan man støde på ejendommelig nomenklatur, når man studerer ingredienslisterne for

Kan kviksølv-isotoper være nøglen til at forstå kviksølvforureningen i Arktis?

AktueltArtikler fra Dansk KemiKlima og miljø12. 01. 2026

I de senere år har den teknologiske udvikling medført, at det er muligt at måle kviksølv-isotoper med så høj præcision, at disse kan bruges som et slags ”fingeraftryk” og give ny viden om kilder, transportveje og processer i kviksølvets komplicerede kredsløb. Artiklen har været bragt i Dansk Kemi

Forstå pulver gennem simuleringer

AktueltArtikler fra Dansk KemiKemiteknik05. 01. 2026

Pulverbaserede produkter har mange fordele, men pulverets uforudsigelige og komplekse adfærd vanskeliggør at styre de processer, der producerer det. Med avancerede numeriske simuleringer kan vi nu kigge ind i selve procesudstyret og dermed designe forbedrede processer. Artiklen har været bragt i

Når bobler og farveskift afslører reaktorens hemmeligheder

AktueltArtikler fra Dansk KemiKemiteknik15. 12. 2025

Visuelle metoder giver ny indsigt i boblestørrelser, blandingstider og iltoverførsel i bioreaktorer. Artiklen har været bragt i Dansk Kemi nr. 5, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Emilie Overgaard Willer, Camilla Tue

Koks i jorden og olie i tanken

AktueltArtikler fra Dansk KemiKemiteknik08. 12. 2025

Omdannelse af halm via langsom pyrolyse og hydro-deoxygenering. Artiklen har været bragt i Dansk Kemi nr. 5, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Claus Dalsgaard Jensen1, Anker Degn Jensen1, Magnus Zingler Stummann2 og Jesper

DTU blandt Europas bedste universiteter – bl.a. indenfor kemi og miljøteknologi

AktueltBranchenyt01. 12. 2025

For tredje år i træk ligger DTU øverst på ranglisten EngiRank, der rangerer de bedste tekniske universiteter i Europa. EngiRank har udvidet antallet af universiteter, så der nu er 239 – heriblandt 15 universiteter fra Storbritannien. - Det er en stor anerkendelse, ikke blot af DTU som

Tilmeld Nyhedsbrev

Tilmeld dig til dit online branchemagasin/avis





Få fuld adgang til indlægning af egne pressemeddelelser...
Læs mere her

/Nyheder

  • DENIOS ApS

    Olien flød ud i vandet – men én ting inddæmmede den

  • MD Scientific

    Kolonne til hurtig måling af ADCC-aktivitet

  • Mikrolab – Frisenette A/S

    IKA Specials Q1 2026 – Spar 15% på laboratorieudstyr

  • Busch Vakuumteknik A/S

    Busch Group præsenterer vakuumløsninger til skalerbare brug af brint og kulstof

  • DENIOS ApS

    Hvad er forskellen på et brandsikkert skab og et batteriskab?

  • Mikrolab – Frisenette A/S

    nerbe plus petriskåle – certificeret kvalitet til en god pris

  • Dansk Laborant-Forening/HK

    Vi kan ikke undvære laboranterne

  • Mikrolab – Frisenette A/S

    Pipette- og vægtbytte er tilbage!

  • DENIOS ApS

    Skal dit truckværn være af stål eller plast?

  • Busch Vakuumteknik A/S

    Pfeiffer Vacuum+Fab Solutions bliver officiel global leverandør af ITER-flanger

Vis alle nyheder fra vores FOKUSpartnere ›

Seneste Nyheder

  • 2026-udgaven af Torkil Holm Prisen måtte deles af to markante forskningsprofiler

    03.02.2026

  • Italienskfødt, dansk-bosat forsker modtager årslegat for at sætte molekyler på menuen

    27.01.2026

  • To år med enhedspatentet og Enhedspatentdomstolen

    26.01.2026

  • Materialer til konstruktion af små modulære atomreaktorer med smeltet fluorid-salt

    20.01.2026

  • Er der salat i solcreme?

    12.01.2026

  • Kan kviksølv-isotoper være nøglen til at forstå kviksølvforureningen i Arktis?

    12.01.2026

  • Forstå pulver gennem simuleringer

    05.01.2026

  • Når bobler og farveskift afslører reaktorens hemmeligheder

    15.12.2025

  • Koks i jorden og olie i tanken

    08.12.2025

  • DTU blandt Europas bedste universiteter – bl.a. indenfor kemi og miljøteknologi

    01.12.2025

  • Sodpartikler i København

    25.11.2025

  • Rens søen og gød marken: Søsediment som bæredygtig fosforgødning

    17.11.2025

  • Glas som batterimateriale

    10.11.2025

  • Vælg bælg

    03.11.2025

  • Enzymet glucoseoxidase – en status i 100-året for Detlev Müllers opdagelse

    29.10.2025

Alle nyheder ›

Læs Dansk Kemi online

Annoncering i Dansk Kemi

KONTAKT

TechMedia A/S
Naverland 35
DK - 2600 Glostrup
www.techmedia.dk
Telefon: +45 43 24 26 28
E-mail: info@techmedia.dk
Privatlivspolitik
Cookiepolitik