• Facebook
  • LinkedIn
  • KONTAKT
  • ANNONCERING
  • OM KEMIFOKUS
  • PARTNERLOGIN

KemiFOKUS

Fokus på kemi

  • Analytisk kemi
  • Arbejdsmiljø/Indeklima
  • Biokemi
  • Biologi
  • Bioteknologi
  • Branchenyt
  • Energi
  • Fødevarekemi
  • Historisk kemi
  • Kemiteknik
  • Kemometri
  • Klikkemi
  • Klima og miljø
  • Lovgivning og patenter
  • Medicinalkemi
  • Nanoteknologi
  • Organisk kemi
  • Artikler fra Dansk Kemi

EnergiKemiteknikKlima og miljø01. 10. 2019 | Katrine Meyn

Fremtidens bæredygtige samfund kan baseres på grøn metanol

EnergiKemiteknikKlima og miljø01. 10. 2019 By Katrine Meyn

Voksende elproduktion fra fluktuerende, vedvarende energikilder kalder på en effektiv lagrings- og distributionsteknologi. Decentrale metanolanlæg, som fremstiller metanol fra vedvarende el og lokale CO2-kilder, vil kunne sikre effektiv energiudnyttelse, men det kræver udvikling af nye, mere aktive katalysatorer.

Læs originalartiklen her

Artiklen har været bragt i Dansk Kemi nr. 7, 2019 og kan læses uden illustrationer, strukturer og ligninger herunder.

Af Niels Dyreborg Nielsen, Anker Degn Jensen og Jakob Munkholt Christensen, DTU Kemiteknik

Olie- og gasressourcerne er begrænsede, hvorfor fremtidens bæredygtige energiform er el fra vedvarende energikilder [1], men det rejser spørgsmålet, hvordan el kan lagres effektivt til brug på vindstille og overskyede dage med højt elforbrug? Det ideelle lagringsmedie er effektivt til op- og afladning og besidder en høj energitæthed. Nutidens batteriteknologier er udfordrede på grund af deres lave energitæthed, mens lagring i form af brint dannet fra elektrolyse af vand også har en begrænset energitæthed. En mulig løsning er at anvende denne brint til produktion af flydende kemikalier som metanol med markant højere energitætheder som vist i figur 1.

Fremtidens bæredygtige metanolsamfund
Figur 2 illustrerer konceptet bag bæredygtig metanolproduktion baseret på en CO2-neutral cyklus. Energilagring som metanol inkluderer vandelektrolyse, hvor vedvarende el driver spaltningen af H2O til O2 og H2. Metanolsyntesen sker ved at reagere H2 med CO2, se reaktion 1, opfanget fra industrielle anlæg og naturlige kilder. Reaktionen er velkendt fra industrien (80-90 millioner tons efterspørgsel i 2018 med 6 procent årlig vækst [3]) og accelereres af katalysatoren Cu/ZnO/Al2O3 under 50-100 bars tryk ved 200-300°C [3].

CO2 + 3H2 → CH3OH + H2O (1)

At bæredygtig metanolproduktion, figur 2, er praktisk mulig, er bevist af virksomheden Carbon Recycling International (CRI) fra Island, hvor man har favorable betingelser grundet stor kapacitet og god tilgængelighed af vedvarende energikilder som geotermi og vandkraft. Udnyttelse af geotermisk energi udleder CO2, som opfanges og indgår i cyklussen for metanol til gavn for både industrien (CRI) og samfundet. CRI’s anlæg beviser, at grøn metanol kan være økonomisk rentabelt, hvis rigeligt med CO2 let kan indfanges og billig vedvarende el er tilgængeligt. Udover mulighederne for lagring af vedvarende energi er metanol et vigtigt kemisk råmateriale, der anvendes til fremstilling af maling, plastik, kemikalier og brændstoffer m.m. [3]. Samtidigt bidrager processen til reduktion af CO2-koncentrationen i atmosfæren, hvilket gør det til en fremragende byggesten for fremtidens bæredygtige samfund.
Den tidligere nobelprisvinder i kemi Richard Smalley studerede udfordringerne omkring fremtidens energiforsyning og konkluderede, at for at indfase fremtidige løsninger er det nødvendigt, at lagringen af den bæredygtige el kan ske i lokale, decentrale anlæg [1]. Hvis metanolsyntesen skal udføres i decentrale anlæg med brint fra elektrolyse og CO2 fra lokale kilder eller atmosfæren, er det ønskværdigt, at processen kan udføres ved mildere betingelser (lavere tryk og temperatur), end der anvendes i den nuværende industrielle proces. Mildere betingelser gør dog metanolsyntese fra CO2 og H2 ugunstigt fra et kinetisk synspunkt. Følgelig er det nødvendigt at udvikle mere aktive katalysatorer til drift ved mildere betingelser, hvilket igangværende arbejde på DTU Kemiteknik bidrager til.

Hvad er de katalytisk aktive sites?
Gennem øget forståelse af den konventionelle katalysators evne til at katalysere reaktionen mellem CO2 og H2 ønsker vi at bidrage til og guide optimeringsarbejdet. Produktionen af metanol skalerer generelt lineært med Cu-overfladearealet [4,5] for katalysatorer som Cu/ZnO/Al2O3, hvorfor Cu beskrives som den aktive komponent, mens ZnO og Al2O3 udgør bærermaterialerne. Interessant nok spiller bærermaterialet dog en afgørende rolle for aktiviteten af hvert Cu overfladesite [5], som vist på figur 3.

Mekanismen bag bærereffekten undersøges i et forsøg bestående af fire trin, som skitseret i figur 4.

Efter aktivering af katalysatoren i H2 udsættes den for industrielt relevante betingelser (CO2/CO/H2 ved T = 250°C, P = 50 bar), hvor gasmolekylerne via en række delreaktioner på katalysatoroverfladen omdannes til metanol. Et vigtigt mellemprodukt er formiat (HCOO-) [6], som delvist dækker Cu-overfladen under metanolsyntese og kan være en afgørende brik i forståelsen af bærereffekten. Bratkøling med flydende nitrogen under metanolsyntesen fastholder formiats dækningsgrad på Cu-overfladen, som efterfølgende kvantificeres ved programmeret opvarmning, kaldet temperaturprogrammeret desorption (TPD), hvor formiaten nedbrydes til CO2 og brint omkring 140-170°C [7]. Figur 5 viser en lineær sammenhæng mellem dannelseshastigheden af metanol per Cu site og formiats dækningsgrad på Cu overfladen uafhængigt af bærermaterialet.

Bærermaterialet regulerer derfor aktiviteten af overflade Cu sites sandsynligvis gennem bærer-metal interaktioner, som endnu ikke er belyst.

Fremtidigt arbejde
Opklaring af mekanismen bag bærereffekten, der påvirker metanolaktiviteten på Cu, kan bane vejen for udvikling af mere aktive metanol-katalysatorer selv ved mildere reaktionsbetingelser. Hvis lokale og økonomisk rentable metanolanlæg kan virkeliggøres, da vil visionen om et bæredygtigt og CO2-neutralt metanolsamfund kunne realiseres.

Dette projekt er en del af Villum Centeret for Videnskaben bag Bæredygtige Brændstoffer og Kemikalier (V-SUSTAIN). Stor tak skal lyde til Villum Fonden for bevilling 9455, der muliggjorde dannelsen af dette center.

Referencer
1. R.E. Smalley, “Our Energy Challenge,” in Energy and Nanotechnology: Prospects for Solar Energy in the 21st Century, 2005.
2. H.H. Larsen and L.S. Petersen, “DTU International Energy Report 2013: Energy storage options for future sustainable energy systems,” 2013.
3. J. Sehested, “Industrial and scientific directions of methanol catalyst development,” J. Catal., no. 371, pp. 368-375, 2019.
4. C. Baltes, S. Vukojević, and F. Schüth, “Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis,” J. Catal., vol. 258, no. 2, pp. 334-344, 2008.
5. M. Kurtz, H. Wilmer, T. Genger, O. Hinrichsen, and M. Muhler, “Deactivation of Supported Copper Catalysts for Methanol Synthesis,” Catal. Letters, vol. 86, no. 1-3, pp. 77-80, 2003.
6. S.G. Neophytides, A.J. Marchi, and G.F. Froment, “Methanol synthesis by means of diffuse reflectance infrared Fourier transform and temperature-programmed reaction spectroscopy,” Appl. Catal., vol. 86, pp. 45-64, 1992.
7. S. Fujita, M. Usui, H. Ito, and N. Takezawa, “Mechanisms of Methanol Synthesis from Carbon Dioxide and from Carbon Monoxide at Atmospheric Pressure over Cu/ZnO,” J. Catal., vol. 157, no. 2, pp. 403-413, 1995.

 

Skrevet i: Energi, Kemiteknik, Klima og miljø

Seneste nyt fra redaktionen

Prisen på grisen: Hvad koster oprensning af beskidt CO2?

Artikler fra Dansk KemiGrøn omstillingTop02. 06. 2025

Hvor rent er CO2 fra CO2-fangst? Og hvor dyrt er det at oprense CO2? Denne artikel giver indsigt i nogle af udfordringerne ved at implementere en global CO2 infrastruktur. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs

Der er brug for lange måleserier af miljøparametre

AktueltArtikler fra Dansk KemiKlima og miljø26. 05. 2025

Kontinuerlige, kvalitetssikrede målinger af kemiske, fysiske og biologiske miljøparametre giver uundværlig information. Det gælder også for Grønland. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen

Chemical ionization mass spectrometry in atmospheric studies

AktueltAnalytisk kemiArtikler fra Dansk Kemi19. 05. 2025

Advances in chemical ionization mass spectrometry can improve our understanding of atmospheric composition. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Varun Kumar, Institut for

Gamle processer, nye muligheder: Nyt kemisk-biologisk koncept til CO2-fangst og omdannelse

AktueltArtikler fra Dansk KemiBioteknologi14. 05. 2025

Oldgamle CO2-ædende mikroorganismer kan fange CO2 direkte fra skorstensrøg og omdanne kulstoffet til grønne molekyler. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Mads Ujarak Sieborg1 og

Centrotherm clean solutions bliver til Pfeiffer Vacuum+Fab Solutions

AktueltBranchenyt14. 05. 2025

Busch Group annoncerer, at deres brand centrotherm clean solutions bliver en del af Pfeiffer Vacuum+Fab Solutions. Fra september 2025 vil gasreduktionssystemerne til Semicon-industrien, som tidligere blev tilbudt under dette mærke, blive integreret i Pfeiffer-porteføljen og fremover være

I dag får professor Per Halkjær Nielsen Videnskabernes Selskabs Guldmedalje

Branchenyt14. 05. 2025

For blot fjerde gang i dette årtusinde uddeles Videnskabernes Selskabs Guldmedalje. Det sker i dag, hvor bakterieforsker Per Halkjær Nielsen, professor ved Institut for Kemi og Biovidenskab ved Aalborg Universitet, får den fine hæder for sit livsværk og sin holdånd. Han er manden, der kortlægger

Atmosfærisk transport af PFAS til Højarktis

AktueltArtikler fra Dansk KemiKlima og miljø28. 04. 2025

Tilstedeværelsen af PFAS-forbindelser skyldes ikke kun lokale kilder, men de kan langtransporteres i luften til selv meget fjerntliggende arktiske egne. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen

Biotek-firma bag fedme-medicin på tabletform har lagt en klar plan om samarbejde eller opkøb

AktueltMedicinalkemi21. 04. 2025

I dag er det frem med nålen, hvis man er i behandling med diverse former for fedme-medicin. Det hæmmer imidlertid udbredelsen på specielt asiatiske og afrikanske markeder, hvor der er en udtalt nålefobi. Derfor arbejder det danskstiftede biotekselskab Pila Pharma med at få udvikle deres

Dansk virksomhed vil vende produktionen af ammoniak på hovedet – ned i en lille container

AktueltBioteknologiFødevarekemi07. 04. 2025

NitroVolt, en dansk biotech-virksomhed, vil vende produktionen af ammoniak på hovedet. I stedet for den velkendte løsning, der bygger på den energitunge Haber-Bosch-proces, vil produktionen nu foregå i en container, der fx kan stå direkte ude hos en landmand. Ammoniak til kunstgødning er en slags

En EU-historie om nomenklatur – og ginseng til hunde, katte og heste!

AktueltArtikler fra Dansk KemiHistorisk kemi01. 04. 2025

Artiklen har været bragt i Dansk Kemi nr. 6, 2024 og kan læses uden illustrationer, strukturer og ligninger herunder. Læs originalartiklen her Nomenklaturudvalget får indimellem henvendelser om dansk kemisk nomenklatur fra de oversættere i EU, hvis opgave det er at oversætte EU-lovgivning på

Tilmeld Nyhedsbrev

Tilmeld dig til dit online branchemagasin/avis





Få fuld adgang til indlægning af egne pressemeddelelser...
Læs mere her

/Nyheder

  • DENIOS ApS

    Lær at håndtere lækager på 90 min.

  • Busch Vakuumteknik A/S

    Mød Busch på Spildevand Teknisk Forenings Årsmøde 2025

  • Dansk Laborant-Forening/HK

    Styrk laboratoriets digitale kompetencer med Python

  • DENIOS ApS

    Sådan vælger du det rigtige opbevaringsskab til farlige stoffer

  • MD Scientific

    Mød MD Scientific på ESOC 2025

  • Busch Vakuumteknik A/S

    Busch Group præsenterer innovative vakuumløsninger på Battery Show Europe 2025 i Stuttgart

  • DENIOS ApS

    Sådan transporterer du lithiumbatterier sikkert

  • Kem-En-Tec Nordic

    Opnå rent DNA/RNA på få minutter og på bæredygtig vis!

  • Kem-En-Tec Nordic

    Sikker gelfarvning på kun 15 minutter?

  • DENIOS ApS

    Her er den oversete vej til et sundere arbejdsmiljø

Vis alle nyheder fra vores FOKUSpartnere ›

Seneste Nyheder

  • Prisen på grisen: Hvad koster oprensning af beskidt CO2?

    02.06.2025

  • Der er brug for lange måleserier af miljøparametre

    26.05.2025

  • Chemical ionization mass spectrometry in atmospheric studies

    19.05.2025

  • Gamle processer, nye muligheder: Nyt kemisk-biologisk koncept til CO2-fangst og omdannelse

    14.05.2025

  • Centrotherm clean solutions bliver til Pfeiffer Vacuum+Fab Solutions

    14.05.2025

  • I dag får professor Per Halkjær Nielsen Videnskabernes Selskabs Guldmedalje

    14.05.2025

  • Atmosfærisk transport af PFAS til Højarktis

    28.04.2025

  • Biotek-firma bag fedme-medicin på tabletform har lagt en klar plan om samarbejde eller opkøb

    21.04.2025

  • Dansk virksomhed vil vende produktionen af ammoniak på hovedet – ned i en lille container

    07.04.2025

  • En EU-historie om nomenklatur – og ginseng til hunde, katte og heste!

    01.04.2025

  • Tysk elektrolyseanlæg er som det første i verden blevet integreret direkte i kemisk produktion

    31.03.2025

  • Dansk innovation blander sig i toppen over lande med de fleste patentansøgninger

    31.03.2025

  • Ny grundbog tager studerende på videregående uddannelser ind i den basale kemi

    26.03.2025

  • Nedrivningsarbejdere i kontakt med PCB slipper med skrækken – kun lave niveauer i blodet

    25.03.2025

  • Styrkelse af nyfundet gen kan gøre kartoflen resistent over for svampeangreb

    24.03.2025

Alle nyheder ›

Læs Dansk Kemi online

Annoncering i Dansk Kemi

KONTAKT

TechMedia A/S
Naverland 35
DK - 2600 Glostrup
www.techmedia.dk
Telefon: +45 43 24 26 28
E-mail: info@techmedia.dk
Privatlivspolitik
Cookiepolitik