• Facebook
  • LinkedIn
  • KONTAKT
  • ANNONCERING
  • OM KEMIFOKUS
  • PARTNERLOGIN

KemiFOKUS

Fokus på kemi

  • Analytisk kemi
  • Arbejdsmiljø/Indeklima
  • Biokemi
  • Biologi
  • Bioteknologi
  • Branchenyt
  • Energi
  • Fødevarekemi
  • Historisk kemi
  • Kemiteknik
  • Kemometri
  • Klikkemi
  • Klima og miljø
  • Lovgivning og patenter
  • Medicinalkemi
  • Nanoteknologi
  • Organisk kemi
  • Artikler fra Dansk Kemi

Artikler fra Dansk KemiGrøn omstilling03. 10. 2023 | Heidi Thode

Metanol som et bæredygtigt kemikalie og brændstof

Artikler fra Dansk KemiGrøn omstilling03. 10. 2023 By Heidi Thode

Den grønne omstilling sætter fokus på elektrificering af kemikalieproduktion, der i dag sker med energi og råmaterialer fra fossile kilder. Bæredygtigt producerede kemikalier og brændstoffer kræver innovative løsninger, og her er metanol en vigtig brik.

Artiklen har været bragt i Dansk Kemi nr. 5, 2023 og kan læses uden illustrationer, strukturer og ligninger herunder.

Læs originalartiklen her

Af Jonas Abitz Boysen, Anker Degn Jensen og Jakob Munkholt Christensen, DTU Kemiteknik

Klimaforandringer ses tydeligere år for år. Det er et globalt problem skabt af afbrændingen af fossile ressourcer som kul, olie og gas [1]. Udfasningen af disse kræver grønne innovative løsninger og samarbejde verden over.
I 2019 blev der globalt udledt cirka 37 milliarder tons kuldioxid (CO2) fra menneskelig aktivitet, hvoraf sektorer som shipping står for cirka 3 procent, og den totale transportsektor står for cirka 9 procent [2]. Samme år blev der produceret cirka 100 millioner tons metanol til den kemiske industri, hvoraf omkring 99 procent blev produceret fra fossile kilder som kul og naturgas svarende til en CO2-udledning på cirka 136 millioner tons [2]. Det forudsiges, at metanolproduktionen i 2050 stiger til 500 millioner tons per år [2].
Bæredygtig metanol er en vigtig brik for at gøre den kemiske industri og transportsektoren grønnere, da CO2-udledingen kan reduceres med op til 98 procent sammenlignet med fossile brændstoffer [2].

Hvordan kan bæredygtig metanol reducere den enorme CO2-udledning fra disse sektorer?
Uanset om metanol er fremstillet fra fossile eller bæredygtige kilder, er den kemiske struktur identisk, CH3OH. Det betyder, at fossilt metanol kan erstattes af bæredygtig (CO2-neutral) metanol én til én i den kemiske industri, hvor metanolen bruges som råvare til produktionen af kemikalier, materialer, plastik og tekstiler. Derudover kan metanol også bruges som brændstof inden for shippingindustrien eller opgraderes til flybrændstof, da disse sektorer på nuværende tidspunkt ikke kan elektrificeres på samme måde som personbilen grundet den lave energitæthed i moderne batterier [2].
Metanol forventes at blive et dominerende brændstof i shippingindustrien, da det er en væske ved stuetemperatur og atmosfærisk tryk; kan transporteres i den nuværende infrastruktur; er nemt at producere og har en relativ høj energitæthed. Figur 1 illustrerer den volumetriske og gravimetriske energitæthed for forskellige brændstoffer.
Men hvordan fremstiller vi CO2-neutrale kemikalier og brændstoffer til den kemiske industri samt de skibe og fly, der ikke umiddelbart kan elektrificeres? Her kan man bruge de såkaldte Power-to-X processer, hvor man udnytter vedvarende elektricitet fra for eksempel sol, vind og vandkraft (power) til at producere brint (H2) dannet fra elektrolyse via spaltning af vand (H2O). Denne brint kan reagere direkte med CO2 (reaktion R1), fanget fra luften eller fra forbrænding af biomasse, og omdannes til et syntetisk brændstof eller kemikalie med højere energitæthed (X); her e-metanol (elektrificeret-metanol).
Gennem Power-to-X processer kan vi skabe en cirkulær kemisk produktion baseret på CO2-neutral omdannelse til bæredygtig metanol, som vist i figur 2.

Bæredygtig metanolproduktion sætter nye krav til katalysatoren
Metanol produceres i dag primært fra naturgas, der omdannes til syntesegas (en blanding af CO, CO2 og H2) med et betragteligt indhold af CO. Metanolsyntesen foregår ved brug af en Cu/ZnO/Al2O3 katalysator, hvor CO2 og H2 reagerer på katalysatoroverfladen under højt tryk og temperatur (P = 50-100 bar, T= 200-300°C) og danner metanol og H2O, ved reaktion R1 [3].
Vand har en inhiberende effekt på katalysatoren [4]. Her kommer brugen af syntesegas med et højt indhold af CO til sin ret, eftersom CO fjerner vandet via water-gas-shift reaktionen ved at danne mere reaktant, CO2 og H2 (reaktion R2) [5].
Bæredygtig metanol skal dannes ud fra en fødestrøm bestående af kun CO2 og H2, hvilket stiller større krav til katalysatoren for at modstå den inhiberende effekt fra vand. Det betyder, at yderligere forskning i forståelsen af det katalytiske aktive site er vigtig for at optimere processen.
Den industrielle metanolkatalysator består af nanopartikler af Cu (den aktive komponent), samt ZnO og Al2O3 (bærematerialer). Det er tidligere blevet vist, at reaktionshastigheden i Cu-katalyseret hydrogenering af CO2 til metanol skalerer lineært med Cu overfladearealet [6,7], hvilket tyder på, at reaktionen sker på hele Cu-overfladen. Derudover har bærematerialet, ZnO, en helt afgørende rolle, da aktiviteten af hvert Cu overfladesite øges med en størrelsesorden relativt til ren kobber, når kobberpartiklerne er i kontakt med ZnO [5]. Denne synergi mellem Cu og ZnO er endnu ikke forstået og en øget forståelse og kontrol med denne effekt kan være nøglen til bedre katalysatorer.
En af de aktuelle teorier omkring synergieffekten går på, at ZnO reduceres og skaber en messinglegering (CuZn-legering) på overfladen med højere aktivitet [8]. Vi undersøgte reduktionens effekt på synergien igennem eksperimenter, hvor den industrielle katalysator aktiveres (reduceres) i 0,05 bar H2 eller 0,095 bar CO ved 175°C. Herefter måles dannelseshastigheden af metanol ved milde reaktionsbetingelser (T =135°C, P =1 bar, H2/CO2 = 4/1) med lav omsætning (figur 3).
Hvis katalysatoren reduceres i H2, ses en positiv effekt på reaktionshastigheden i forhold til reduktion i den mere reducerende gas, CO. Reduktionen af Cu/ZnO/Al2O3 katalysatoren i CO er kendt for at danne CuZn-legeringer [9]. Hvis en sådan legering (som det var formodet i [8]) var væsentlig for den katalytiske aktivitet, burde den kraftigere CO-reduktion være positiv. Dog kan overreduktion forekomme og danne bulk CuZn-legering, hvilket har en negativ effekt [10]. Dette kræver en væsentlig højere temperatur under reduktionen i CO [11], hvorfor dette heller ikke kan forklare den negative effekt, CO har på reaktionshastigheden. Resultaterne i figur 3 tyder på, at det ikke er selve reduktionen af ZnO, der øger aktiviteten, men derimod tilstedeværelsen af H2. Forståelsen af den industrielle Cu/ZnO/Al2O3 katalysators høje aktivitet synes stadig ufuldstændig, hvilket kræver yderligere forskning i håb om at kunne opnå en bedre forståelse og udnyttelse af synergien.

Fremtidigt arbejde
Aktiviteten af denne Cu-baserede katalysator bliver påvirket positivt af synergien mellem Cu, ZnO og tilstedeværelsen af H2. Disse interaktioner skal undersøges yderligere ved hjælp af spektroskopiske teknikker som XAS og XPS, der kan detektere faseændringer i katalysatorstrukturen og dens overflade. På denne måde kan vi detektere CuZn-legeringer i bulkstrukturen samt overfladen og sammenligne denne med aktiviteten i figur 3. Igennem en bedre forståelse af fænomenet er det muligt at designe og udvikle fremtidens katalytiske proces til produktionen af bæredygtig metanol.

Dette projekt er en del af Villum Centeret for Videnskab bag Bæredygtige Brændstoffer og Kemikalier (V-SUSTAIN). Forfatterne takker Villum Fonden for bevilling 9455, der muliggjorde dannelsen af dette center.

E-mail:
Jakob Munkholt Christensen: jmc@kt.dtu.dk

Referencer
1. P. Friedlingstein, M. O’Sullivan, M. Jones, R. Andrew, L. Gregor, J. Hauck, C. Le Quéré, Global Carbon Budget 2022, Earth Syst. Sci. Data. 11 (2022) 4811-4900.
2. International Renewable Energy Agency (IRENA), Innovation Outlook: Renewable Methanol, 2021. http://www.irena.org/.
3. J. Sehested, Industrial and scientific directions of methanol catalyst development, J. Catal. 371 (2019) 368-375.
4. J. Thrane, S. Kuld, N.D. Nielsen, A.D. Jensen, J. Sehested, J.M. Christensen, Methanol-Assisted Autocatalysis in Catalytic Methanol Synthesis, Angew. Chemie – Int. Ed. 59 (2020) 18189-18193.
5. N.D. Nielsen, A.D. Jensen, J.M. Christensen, The roles of CO and CO2 in high pressure methanol synthesis over Cu-based catalysts, J. Catal. 393 (2021) 324-334.
6. M. Schumann, M.R. Nielsen, T.E.L. Smitshuysen, T.W. Hansen, C.D. Damsgaard, A.C.A. Yang, M. Cargnello, J.D. Grunwaldt, A.D. Jensen, J.M. Christensen, Rationalizing an unexpected structure sensitivity in heterogeneous catalysis-CO hydrogenation over Rh as a case study, ACS Catal. 11 (2021) 5189-5201.
7. C. Baltes, S. Vukojević, F. Schüth, Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis, J. Catal. 258 (2008) 334-344.
8. S. Kuld, M. Thorhauge, H. Falsig, C.F. Elkjær, S. Helveg, I. Chorkendorff, J. Sehested, Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis, Science. 352 (2016) 969-974.
9. P. Amann, B. Klötzer, D. Degerman, N. Köpfle, T. Götsch, P. Lömker, C. Rameshan, K. Ploner, D. Bikaljevic, H.Y. Wang, M. Soldemo, M. Shipilin, C.M. Goodwin, J. Gladh, J.H. Stenlid, M. Börner, C. Schlueter, A. Nilsson, The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst, Science. 376 (2022) 603-608.
10. T. Kandemir, F. Girgsdies, T.C. Hansen, K.D. Liss, I. Kasatkin, E.L. Kunkes, G. Wowsnick, N. Jacobsen, R. Schlögl, M. Behrens, InSitu study of catalytic processes: Neutron diffraction of a methanol synthesis catalyst at industrially relevant pressure, Angew. Chemie – Int. Ed. 52 (2013) 5166-5170.
11. K.D. Jung, O.S. Joo, S.H. Han, Structural change of Cu/ZnO by reduction of ZnO in Cu/ZnO with methanol, Catal. Letters. 68 (2000) 49-54.

Skrevet i: Artikler fra Dansk Kemi, Grøn omstilling

Seneste nyt fra redaktionen

Chemical ionization mass spectrometry in atmospheric studies

Analytisk kemiArtikler fra Dansk KemiTop19. 05. 2025

Advances in chemical ionization mass spectrometry can improve our understanding of atmospheric composition. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Varun Kumar, Institut for

Gamle processer, nye muligheder: Nyt kemisk-biologisk koncept til CO2-fangst og omdannelse

AktueltArtikler fra Dansk KemiBioteknologi14. 05. 2025

Oldgamle CO2-ædende mikroorganismer kan fange CO2 direkte fra skorstensrøg og omdanne kulstoffet til grønne molekyler. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Mads Ujarak Sieborg1 og

Centrotherm clean solutions bliver til Pfeiffer Vacuum+Fab Solutions

AktueltBranchenyt14. 05. 2025

Busch Group annoncerer, at deres brand centrotherm clean solutions bliver en del af Pfeiffer Vacuum+Fab Solutions. Fra september 2025 vil gasreduktionssystemerne til Semicon-industrien, som tidligere blev tilbudt under dette mærke, blive integreret i Pfeiffer-porteføljen og fremover være

I dag får professor Per Halkjær Nielsen Videnskabernes Selskabs Guldmedalje

Branchenyt14. 05. 2025

For blot fjerde gang i dette årtusinde uddeles Videnskabernes Selskabs Guldmedalje. Det sker i dag, hvor bakterieforsker Per Halkjær Nielsen, professor ved Institut for Kemi og Biovidenskab ved Aalborg Universitet, får den fine hæder for sit livsværk og sin holdånd. Han er manden, der kortlægger

Atmosfærisk transport af PFAS til Højarktis

AktueltArtikler fra Dansk KemiKlima og miljø28. 04. 2025

Tilstedeværelsen af PFAS-forbindelser skyldes ikke kun lokale kilder, men de kan langtransporteres i luften til selv meget fjerntliggende arktiske egne. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen

Biotek-firma bag fedme-medicin på tabletform har lagt en klar plan om samarbejde eller opkøb

AktueltMedicinalkemi21. 04. 2025

I dag er det frem med nålen, hvis man er i behandling med diverse former for fedme-medicin. Det hæmmer imidlertid udbredelsen på specielt asiatiske og afrikanske markeder, hvor der er en udtalt nålefobi. Derfor arbejder det danskstiftede biotekselskab Pila Pharma med at få udvikle deres

Dansk virksomhed vil vende produktionen af ammoniak på hovedet – ned i en lille container

AktueltBioteknologiFødevarekemi07. 04. 2025

NitroVolt, en dansk biotech-virksomhed, vil vende produktionen af ammoniak på hovedet. I stedet for den velkendte løsning, der bygger på den energitunge Haber-Bosch-proces, vil produktionen nu foregå i en container, der fx kan stå direkte ude hos en landmand. Ammoniak til kunstgødning er en slags

En EU-historie om nomenklatur – og ginseng til hunde, katte og heste!

AktueltArtikler fra Dansk KemiHistorisk kemi01. 04. 2025

Artiklen har været bragt i Dansk Kemi nr. 6, 2024 og kan læses uden illustrationer, strukturer og ligninger herunder. Læs originalartiklen her Nomenklaturudvalget får indimellem henvendelser om dansk kemisk nomenklatur fra de oversættere i EU, hvis opgave det er at oversætte EU-lovgivning på

Tysk elektrolyseanlæg er som det første i verden blevet integreret direkte i kemisk produktion

AktueltEnergi31. 03. 2025

Efter en byggeperiode på omkring to år, er BASF nye 54 megawatt elektrolyseanlæg blevet indviet. Udover at være Tyskland største, med en kapacitet til at producere op til 8.000 ton grøn brint årligt, skriver det også historie på et andet område. Brinten skal primært anvendes som råmateriale i

Dansk innovation blander sig i toppen over lande med de fleste patentansøgninger

AktueltBranchenyt31. 03. 2025

Danske virksomheder er fortsat nogle af de mest aktive i Europa til at innovere. Det viser nye tal fra Den Europæiske Patentmyndighed, EPO, som udsteder patenter, der kan dække i op til 45 lande. Vestas, Novozymes og Danmarks Tekniske Universitet har leveret de største bidrag til, at Danmark kan

Tilmeld Nyhedsbrev

Tilmeld dig til dit online branchemagasin/avis

Få fuld adgang til indlægning af egne pressemeddelelser...
Læs mere her
Dansk Kemi

11 måneder siden

Dansk Kemi
Redaktionen bag Dansk Kemi er klar med ny spændende udgave. ... Vis mereVis mindre

Dansk Kemi

ipaper.ipapercms.dk

Den digitale udgave af magasinet "Dansk Kemi". Dækker kemiens udvikling inden for industri, forskning og uddannelse.
Vis på Facebook
· Del

Share on Facebook Share on Twitter Share on Linked In Share by Email

Læs også magasinet Dansk Kemi

Nyeste udgave af magasinet "Dansk Kemi" kan læses online, ved at klikke på bladforsiden.
Herfra er der desuden adgang til online-arkivet med tidligere udgivelser.

Seneste Nyheder

  • Chemical ionization mass spectrometry in atmospheric studies

    19.05.2025

  • Gamle processer, nye muligheder: Nyt kemisk-biologisk koncept til CO2-fangst og omdannelse

    14.05.2025

  • Centrotherm clean solutions bliver til Pfeiffer Vacuum+Fab Solutions

    14.05.2025

  • I dag får professor Per Halkjær Nielsen Videnskabernes Selskabs Guldmedalje

    14.05.2025

  • Atmosfærisk transport af PFAS til Højarktis

    28.04.2025

  • Biotek-firma bag fedme-medicin på tabletform har lagt en klar plan om samarbejde eller opkøb

    21.04.2025

  • Dansk virksomhed vil vende produktionen af ammoniak på hovedet – ned i en lille container

    07.04.2025

  • En EU-historie om nomenklatur – og ginseng til hunde, katte og heste!

    01.04.2025

  • Tysk elektrolyseanlæg er som det første i verden blevet integreret direkte i kemisk produktion

    31.03.2025

  • Dansk innovation blander sig i toppen over lande med de fleste patentansøgninger

    31.03.2025

  • Ny grundbog tager studerende på videregående uddannelser ind i den basale kemi

    26.03.2025

  • Nedrivningsarbejdere i kontakt med PCB slipper med skrækken – kun lave niveauer i blodet

    25.03.2025

  • Styrkelse af nyfundet gen kan gøre kartoflen resistent over for svampeangreb

    24.03.2025

  • Fra forskning i nanosikkerhed til mere sikker håndtering af nanomaterialer i det danske arbejdsmiljø

    21.03.2025

  • Dansk forbud mod PFAS er lige på trapperne – indsigelsesfrist mod 2024-aftale er overskredet

    20.03.2025

Alle nyheder ›

/Brochurer
/White papers

  • Filtreringskatalog
  • Leverandøroversigt
  • COBOTS brochure
  • Oxipres brochure
  • Ansæt en laborantpraktikant
Se alle ›

Læs Dansk Kemi online

Annoncering i Dansk Kemi

KONTAKT

TechMedia A/S
Naverland 35
DK - 2600 Glostrup
www.techmedia.dk
Telefon: +45 43 24 26 28
E-mail: info@techmedia.dk
Privatlivspolitik
Cookiepolitik