• Facebook
  • LinkedIn
  • KONTAKT
  • ANNONCERING
  • OM KEMIFOKUS
  • PARTNERLOGIN

KemiFOKUS

Fokus på kemi

  • Analytisk kemi
  • Arbejdsmiljø/Indeklima
  • Biokemi
  • Biologi
  • Bioteknologi
  • Branchenyt
  • Energi
  • Fødevarekemi
  • Historisk kemi
  • Kemiteknik
  • Kemometri
  • Klikkemi
  • Klima og miljø
  • Lovgivning og patenter
  • Medicinalkemi
  • Nanoteknologi
  • Organisk kemi
  • Artikler fra Dansk Kemi

Historisk kemi01. 01. 2019 | Katrine Meyn

Verdens vigtigste tabellering fylder 150 år

Historisk kemi01. 01. 2019 By Katrine Meyn

I anledning af at det periodiske system i år fylder 150 år, bringer vi en artikelserie forfattet af Jesper Bendix. Artikelserien illustrerer periodesystemets aktualitet som redskab i systematiseringen af kemien.

Artiklen har været bragt i Dansk Kemi nr. 1, 2019 og kan læses uden illustrationer, strukturer og ligninger herunder.

Læs originalartiklen her

I år markeres 150-året for offentliggørelsen af det periodiske system, eller periodesystemet [1,2]. Året, som fejringen refererer til, er altså 1869, hvor Dmitrij Ivanovitch Mendelejev (engelsk translitterering: Mendeleev), der arbejdede ved Sankt Petersborgs Universitet, fik sin version af periodesystemet offentliggjort [3]. Det var ikke en idé, som var uden forløbere, og de fleste kemikere har sikkert også hørt Lothar Meyers navn i forbindelse med opstillingen af periodesystemet.

Historien er dog noget mere kompliceret end som så, og man kan med rimelighed sige, at udviklingen af de første periodesystemer forløb over tidsrum på mere end 15 år, og at der var flere, mindst fem, vægtige forslag, der var på banen tidligere eller samtidigt med Mendelejevs offentliggørelse [4]. Et af disse var i øvrigt fremsat af danskfødte Gustavus Detlef Hinrichs, der studerede ved Københavns Universitet, før han udvandrede til USA [5]. Ideen om en systematisering af kemien i lighed med Linne’s systematisering af den biologiske verden; en opdeling i ”naturligt” system baseret på ligheder mellem grundstofferne, havde rumlet en tid.

Tidligt havde Döbereiner således fastslået (1829), at der eksisterede flere ”tripletter” af beslægtede grundstoffer, hvor de relative atommasser var indbyrdes forbundet, for eksempel MBr » ½(MCl+ MI), og Gmelin havde bygget videre på disse observationer [6]. Mange divergenser opstod dog i kemikersamfundet på grund af manglende enighed om de relative atommasser, molekyl- og valensbegrebet. Disse spørgsmål blev diskuteret, og i nogen grad afklaret, ved den første internationale videnskabelige kongres, som blev afholdt i Karlsruhe i september 1860 med blandt andet Kekule som organisator, figur 1 [7].

Det forudgående arbejde med bestemmelse af atommasser havde pågået i næsten et halvt århundrede med Daltons diminutive tabellering fra 1803 som den tidligste og med Berzelius som en af de vigtigste bidragydere. Problemerne med at bestemme de relative atommasser var delvist forbundet med eksperimentelle usikkerheder, især for de ikke-gasformige grundstoffer, men det var det uafklarede valensbegreb, der gav anledning til de grundlæggende uenigheder. Ved kongressen i Karlsruhe kunne Cannizzarro, blandt andet baseret på Kekules tilordning af valensen 4 til carbon (1857), endeligt fremlægge en tabellering af relative atommasser, der var praktisk fejlfri omend stadig behæftet med eksperimentelle usikkerheder. Dermed var et væsentligt grundlag på plads til de efterfølgende ni års udvikling af periodesystemer ved de Chancourtois, Odling, Newlands, Hinrichs, Meyer og Mendelejev [4].

Datidens langsomme udbredelse af viden gjorde, at de involverede kemikere i praksis arbejdede parallelt uden at kende til hinandens fremskridt, og primært refererede til tidligere arbejder af Döbereiner, Gmelin, Dumas, Lenssen og Pettenkofer [8]. Der er flere grunde til, at Mendelejev er endt med at få den største del af æren for opstillingen af periodesystemet:

– Hans system var det eneste, der omfattede alle de dengang kendte grundstoffer, selvom nogle var forkert placeret, figur 2

– Han offentliggjorde før Meyer, som kendte til Mendelejevs offentliggørelse

– Han indså klarest nødvendigheden af at inkludere ikke-opdagede grundstoffer

– Han forudså atommasser af nogle af de ukendte grundstoffer og deres valenser

– Han baserede ikke kun sit system på atommasser, men anvendte kemiske egenskaber til at placere de kendte grundstoffer

– Han forudså både kemiske og fysiske egenskaber af forbindelser af de forudsagte grundstoffer

Hvorfor var Mendelejev så mere succesrig end de øvrige med hensyn til at placere grundstofferne? Fordi han, jf. de sidste punkter på listen, indså, at periodesystemet ikke burde fokusere på grundstoffer, men på deres kemiske forbindelser! Der var hos især Gmelin og Mendelejev en klar erkendelse af, at grundstofferne og deres opførsel i kemiske forbindelser var to meget forskellige ting [9,10]. Det kan eksempelvis være vanskeligt at erkende gassen chlor, væsken brom og det faste stof iod som nært beslægtede, men hvis man kender deres forbindelser af blot et par af alkali- og jordalkalimetallerne, så er slægtskabet oplagt. Det samme gælder hydrogen, der ikke springer i øjnene som et alkalimetal – det kræver meget høje tryk på over 400 GPa at bringe hydrogen på metallisk form [11,12] – men som qua sin kemi kun passer ind i første gruppe.

Hele den ovenstående, uinteressante, historiske sammenfatning tjener således det ene formål at føre frem til den centrale grund til, at Mendelejev er vores helt: Nemlig, at han opstillede et kemisk baseret periodesystem, uden som for eksempel de Chancourtois og Hinrichs, at lade sig forblinde af mytisk/religiøse argumenter omkring de numeriske værdier af atomvægtene. Præcis den kemiske basis for Mendelejevs periodesystem er også grunden til, at vi skal fejre det. Hvis Mendelejevs indsigt anvendes i den modsatte retning, så rummer placeringen af et grundstof i periodesystemet masser af information, både kvalitativ og semi-kvantitativ, om det pågældende grundstofs kemi. I periodesystemet har vi den mest kompakte lærebog i kemi, man kan tænke sig. I dag er de første syv perioder af periodesystemet komplette, og vi kender 118 grundstoffer, hvoraf ca. 100 – eller skal vi bøje fakta og lade det være 101 af hensyn til hovedpersonen – har kemisk relevans, figur 3. Æren af at lægge navn til et grundstof fik Mendelejev altså – omend sent (1955). Nobelprisen, den mest oplagte, der aldrig blev givet, og som han var indstillet til to gange, fik han ikke på grund af Svante Arrhenius’ nid og politiseren.

Der er en umiddelbar fascination, der er forbundet med, at alt hvad vi kan sanse, er opbygget af et relativt lille antal byggesten. Hvis man sammenligner antallet af kendte kemiske forbindelser med antallet af grundstoffer, så er forholdet ca. 106 : 1. Vigtigere end den umiddelbare fascination er det dog, at forholdet mellem de to tal udgør et vægtigt argument for ikke at betragte periodesystemet som en historisk foreteelse, eller en pladskrævende tabellering af Bohr’s atommodel, men derimod som et nyttigt redskab til at navigere og tænke kemi, når det skal foregå med større bredde end en enkelt håndfuld grundstoffer. Dette synspunkt vil blive illustreret i de følgende numre af Dansk Kemi gennem sightseeing på kryds og tværs i periodesystemet.

Figur 1. Karlsruhe Ständehaus, der husede den første internationale videnskabelige kongres, kemimødet i 1860, som var forløber til IUPAC. Bygningen var oprindeligt opført som lokalparlament (opført 1822; venstre panel er en litografi fra ca. 1830), men blev stort set destrueret under 2. Verdenskrig. I 1993 blev stadsbiblioteket i Karlsruhe opført på stedet med tydelig historisk arkitektonisk inspiration.

Skrevet i: Historisk kemi

Seneste nyt fra redaktionen

Hofmeister – nem at anvende, svær at forstå

Artikler fra Dansk KemiFødevarekemiTop23. 06. 2025

Franz Hofmeister opløste æggehvide i vandige saltopløsninger. En artikel fra 1888 beskriver, hvordan nogle ioner får proteiner til at udfælde, mens andre ioner har den modsatte effekt. Fødevarekemien bruger stadig Hofmeister, men langt mere nuanceret. Artiklen har været bragt i Dansk Kemi nr. 3,

Udvinding af fødevareproteiner fra kløvergræs ved membranteknologi

AktueltArtikler fra Dansk KemiFødevarekemi17. 06. 2025

Hvis kløvergræs skal kunne anvendes som ny ressource til udvinding af fødevareproteiner, kan membranteknologi være vejen frem. Artiklen har været bragt i Dansk Kemi nr. 3, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Mette Lübeck, Mads

Trinatriumhexafluo… hvad for noget?

AktueltArtikler fra Dansk KemiHistorisk kemi09. 06. 2025

Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) I år fejrer man internt i IUPAC 20-året for offentliggørelsen af The Red Book (i det følgende blot "RB2005") med anbefalinger vedrørende

Prisen på grisen: Hvad koster oprensning af beskidt CO2?

AktueltArtikler fra Dansk KemiGrøn omstilling02. 06. 2025

Hvor rent er CO2 fra CO2-fangst? Og hvor dyrt er det at oprense CO2? Denne artikel giver indsigt i nogle af udfordringerne ved at implementere en global CO2 infrastruktur. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs

Der er brug for lange måleserier af miljøparametre

AktueltArtikler fra Dansk KemiKlima og miljø26. 05. 2025

Kontinuerlige, kvalitetssikrede målinger af kemiske, fysiske og biologiske miljøparametre giver uundværlig information. Det gælder også for Grønland. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen

Chemical ionization mass spectrometry in atmospheric studies

AktueltAnalytisk kemiArtikler fra Dansk Kemi19. 05. 2025

Advances in chemical ionization mass spectrometry can improve our understanding of atmospheric composition. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Varun Kumar, Institut for

Gamle processer, nye muligheder: Nyt kemisk-biologisk koncept til CO2-fangst og omdannelse

AktueltArtikler fra Dansk KemiBioteknologi14. 05. 2025

Oldgamle CO2-ædende mikroorganismer kan fange CO2 direkte fra skorstensrøg og omdanne kulstoffet til grønne molekyler. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Mads Ujarak Sieborg1 og

Centrotherm clean solutions bliver til Pfeiffer Vacuum+Fab Solutions

AktueltBranchenyt14. 05. 2025

Busch Group annoncerer, at deres brand centrotherm clean solutions bliver en del af Pfeiffer Vacuum+Fab Solutions. Fra september 2025 vil gasreduktionssystemerne til Semicon-industrien, som tidligere blev tilbudt under dette mærke, blive integreret i Pfeiffer-porteføljen og fremover være

I dag får professor Per Halkjær Nielsen Videnskabernes Selskabs Guldmedalje

Branchenyt14. 05. 2025

For blot fjerde gang i dette årtusinde uddeles Videnskabernes Selskabs Guldmedalje. Det sker i dag, hvor bakterieforsker Per Halkjær Nielsen, professor ved Institut for Kemi og Biovidenskab ved Aalborg Universitet, får den fine hæder for sit livsværk og sin holdånd. Han er manden, der kortlægger

Atmosfærisk transport af PFAS til Højarktis

AktueltArtikler fra Dansk KemiKlima og miljø28. 04. 2025

Tilstedeværelsen af PFAS-forbindelser skyldes ikke kun lokale kilder, men de kan langtransporteres i luften til selv meget fjerntliggende arktiske egne. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen

Tilmeld Nyhedsbrev

Tilmeld dig til dit online branchemagasin/avis





Få fuld adgang til indlægning af egne pressemeddelelser...
Læs mere her

/Nyheder

  • DENIOS ApS

    NYHED: Her er fremtidens opbevaring af farlige stoffer

  • Busch Vakuumteknik A/S

    MRPC modtager “Innovation in Vacuum Busch Award”

  • DENIOS ApS

    Dette er, hvad der sker, når batterier bryder i brand

  • Busch Vakuumteknik A/S

    Busch Vacuum Solutions præsenterer den intelligente TYR PLUS kapselblæser

  • Dansk Laborant-Forening/HK

    Laboranter er nysgerrige på ny teknik

  • DENIOS ApS

    Sådan udnytter du den stille periode i sommerferien

  • Busch Vakuumteknik A/S

    Sommer vedligeholdelsestips til din vakuumpumpe: 6 gode anbefalinger

  • DENIOS ApS

    Så er det sidste chance

  • DENIOS ApS

    Sikker tøndehåndtering starter her

  • LABDAYS – Fagmesse for Laboratorieteknik

    LabDays Aarhus 2025 – SOLD OUT

Vis alle nyheder fra vores FOKUSpartnere ›

Seneste Nyheder

  • Hofmeister – nem at anvende, svær at forstå

    23.06.2025

  • Udvinding af fødevareproteiner fra kløvergræs ved membranteknologi

    17.06.2025

  • Trinatriumhexafluo… hvad for noget?

    09.06.2025

  • Prisen på grisen: Hvad koster oprensning af beskidt CO2?

    02.06.2025

  • Der er brug for lange måleserier af miljøparametre

    26.05.2025

  • Chemical ionization mass spectrometry in atmospheric studies

    19.05.2025

  • Gamle processer, nye muligheder: Nyt kemisk-biologisk koncept til CO2-fangst og omdannelse

    14.05.2025

  • Centrotherm clean solutions bliver til Pfeiffer Vacuum+Fab Solutions

    14.05.2025

  • I dag får professor Per Halkjær Nielsen Videnskabernes Selskabs Guldmedalje

    14.05.2025

  • Atmosfærisk transport af PFAS til Højarktis

    28.04.2025

  • Biotek-firma bag fedme-medicin på tabletform har lagt en klar plan om samarbejde eller opkøb

    21.04.2025

  • Dansk virksomhed vil vende produktionen af ammoniak på hovedet – ned i en lille container

    07.04.2025

  • En EU-historie om nomenklatur – og ginseng til hunde, katte og heste!

    01.04.2025

  • Tysk elektrolyseanlæg er som det første i verden blevet integreret direkte i kemisk produktion

    31.03.2025

  • Dansk innovation blander sig i toppen over lande med de fleste patentansøgninger

    31.03.2025

Alle nyheder ›

Læs Dansk Kemi online

Annoncering i Dansk Kemi

KONTAKT

TechMedia A/S
Naverland 35
DK - 2600 Glostrup
www.techmedia.dk
Telefon: +45 43 24 26 28
E-mail: info@techmedia.dk
Privatlivspolitik
Cookiepolitik