• Facebook
  • LinkedIn
  • KONTAKT
  • ANNONCERING
  • OM KEMIFOKUS
  • PARTNERLOGIN

KemiFOKUS

Fokus på kemi

  • Analytisk kemi
  • Arbejdsmiljø/Indeklima
  • Biokemi
  • Biologi
  • Bioteknologi
  • Branchenyt
  • Energi
  • Fødevarekemi
  • Historisk kemi
  • Kemiteknik
  • Kemometri
  • Klikkemi
  • Klima og miljø
  • Lovgivning og patenter
  • Medicinalkemi
  • Nanoteknologi
  • Organisk kemi
  • Artikler fra Dansk Kemi

AktueltArtikler fra Dansk KemiEnergi26. 08. 2024 | Heidi Thode

Vi må tænke småt, hvis opskaleringen af Power-to-X skal gå godt

AktueltArtikler fra Dansk KemiEnergi26. 08. 2024 By Heidi Thode

Foto: Wikipedia

Artiklen har været bragt i Dansk Kemi nr. 4, 2024 og kan læses uden illustrationer, strukturer og ligninger herunder.

Læs originalartiklen her

Røntgenstråler gør det muligt at undersøge de bittesmå nanomaterialer, der skal være med til at accelerere den grønne omstilling.

Af Jens Edelvang-Pejrup og Kirsten Marie Ørnsbjerg Jensen, Kemisk Institut, Københavns Universitet

Danmark står på tærsklen af en ny æra inden for Power-to-X (P2X), og landets elforbrug til P2X forventes at overstige vores øvrige elforbrug inden for de næste få årtier [1]. En del af dette elforbrug vil dog gå tabt som varme, når der produceres bæredygtige brændstoffer og andre grønne produkter. Hvis vi vil reducere dette energitab, er det essentielt at benytte en katalysator, der kan reducere energibarrieren for den relevante reaktion – hvad enten det er spaltning af vand til H2 og O2 som et led i energilagring eller reduktion af CO2 i produktionen af bæredygtige kemiske udgangsstoffer. På den måde reducerer vi den energi, der er nødvendig for at få reaktionen til at forløbe, og gør processen så energieffektiv som muligt.
Lige nu er de fleste P2X-katalysatorer baseret på ædle metaller som platin og iridium, der både er sjældne og dyre. Hvis vi fortsat skal have tilstrækkelig med ressourcer til at opfylde vores grønne ambitioner, er det altså afgørende, at vi udnytter ædelmetallerne bedst muligt, eller endda udskifter dem fuldkomment [2]. Dette arbejder vi hen imod i Center for High Entropy Alloy Catalysis (CHEAC) på Københavns Universitet, hvor vi blandt andet benytter røntgenstråler til at undersøge materialers struktur, hvordan de dannes, og hvordan de ændrer sig, når katalytiske processer finder sted.

Når røntgensynet bliver sløret
En katalysator er oftest et fint pulver af partikler, der har en bestemt krystalstruktur. Det er denne atomare struktur, der sammen med grundstofsammensætningen afgør, hvor godt katalysatoren virker. Derfor er disse vigtige at karakterisere, så vi kan kortlægge sammenhænge mellem materialets struktur og dets egenskaber.
Et af de vigtigste redskaber, når en materialekemiker skal bestemme krystalstrukturer, er pulverrøntgenspredning, forkortet PXRD. Her skydes en røntgenstråle på pulveret fra forskellige vinkler, hvilket producerer et karakteristisk spredningsmønster som vist i figur 1c. Da bølgelængden af røntgenstrålerne er omkring 0,1 nm, omtrent samme størrelse som et atom, kan man bruge spredningsmønsteret til at beregne afstanden mellem planer af atomer i et krystallinsk materiale, og dermed finde ud af, hvordan atomerne sidder sammen.
Den simpleste måde at optimere brugen af ædelmetaller i en katalysator er at sikre sig, at mest muligt af metallet er i kontakt med det kemiske reagens – altså udgangsstofferne til den relevante P2X-proces. Som illustreret på figur 1a og b sker der en drastisk stigning i overfladearealet af en given mængde metal i takt med, at metallet deles op i mindre og mindre partikler. Således bliver overfladearealet af 1 mg platin 10 gange større, når partiklerne går fra 100 nm til at være 10 nm i diameter. Kort sagt er nanopartikler altså bedre til katalyse end deres mikroskopiske søskende. Desværre er de også rigtig svære at få øje på. Figur 1c viser, hvordan de røntgenspredningstoppe, som forskere normalvis bruger til at analysere materialestruktur, bliver bredere, efterhånden som partiklerne bliver mindre. Til sidst er det næsten umuligt at sige noget om strukturen ud fra dem. Det skyldes grundlæggende, at røntgenspredning bestemmer afstanden mellem planer af atomer, men der er ganske enkelt ikke plads til veldefinerede planer i helt små nanopartikler.
Heldigvis kan man fra visse typer spredningsdata beregne en såkaldt parfordelingsfunktion (forkortet PDF, se faktaboks), der giver information om afstanden mellem par af atomer i stedet for planer af atomer. På den måde kan vi stadig se den atomare struktur af meget små nanopartikler og endda materialer, der slet ikke er krystallinske. Man kan sige, at når vores røntgensyn bliver sløret, så fungerer PDF’en som en slags briller, der gør det muligt at få øje på ting, der ellers ville være usynlige (figur 1d).

En cocktail af atomer
Udover at lave mindre og mindre nanopartikler, kan man begrænse brugen af ædelmetaller i en katalysator ved at tilsætte nogle billigere grundstoffer. Gør man det, risikerer man blot at ”fortynde” effekten af ædelmetallerne, og så er man lige vidt. På den anden side har studier vist, at en blanding af flere forskellige metaller kan have endnu mere favorable egenskaber end metallerne hver for sig [3]. Dette kaldes cocktaileffekten – ligesom i en cocktail kan den rette balance mellem simple ingredienser blive til noget, der er endnu bedre end summen af dets bestanddele.
Det er ikke indlysende, hvordan man blander en god nanopartikelcocktail. Skal den indeholde to eller ti metaller? Være homogen eller lagdelt (se figur 2). Mulighederne er næsten uendelige, og det er en af grundene til, at cocktaileffekten er så spændende – den åbner op for et helt nyt univers af materialer, der kan justeres gradvist, indtil de har lige netop de egenskaber, der er nødvendige for at katalysere en bestemt reaktion. Det betyder dog også, at det er et enormt foretagende at undersøge og forstå disse mange milliarder nye materialer.

Shaken, not stirred
En Vesper Martini, shaken, not stirred. James Bond ved, hvad han vil have, og han har haft tid til at finde den perfekte opskrift. På den måde minder livet som materialekemiker meget lidt om James Bonds livsstil. For os handler det i stedet om at navigere og sortere i det store udvalg af atomare cocktails, og ikke mindst at være i stand til at reproducere en syntese, når vi får øje på en lovende blanding. For at dette ikke skal blive et sisyfosarbejde, kombinerer vi i CHEAC både teoretiske og eksperimentelle metoder til at forstå de processer, der foregår i løbet af materialernes dannelse. Dette gør os nemlig i stand til at forudse strukturen af gode katalysatorer samt at designe synteser, der producerer lige netop disse materialer.
Når vi går i laboratoriet for at bestemme strukturen af et materiale, tager en måling alt mellem 30 minutter og 24 timer. En typisk syntese af et materiale tager blot et par timer, så vi vil højest kunne indsamle en håndfuld målinger af strukturen, hvis vi vil følge med i dens dannelse. Derfor rejser vi ofte rundt til synkrotroner; store, internationale faciliteter, der producerer meget koncentrerede røntgenstråler, som kan foretage målinger på mindre end ét sekund! Her kan vi følge nøje med i dannelsen af nanopartikler in-situ, altså imens de dannes (se figur 3). På den måde kan vi identificere, hvordan faktorer som temperatur, tryk og atmosfære påvirker udfaldet af syntesen. (Hint: Nøglen til succesfulde nanopartikler er ofte, at de er stirred, not shaken).

Fra skrot til slot
Det er en bedrift i sig selv at syntetisere nanomaterialer, uanset om de er en cocktail af mange forskellige grundstoffer eller blot nogle få. Herefter venter der en helt ny udfordring i at bestemme materialets egenskaber – er det i stand til at katalysere den ønskede reaktion, og i så fald hvor længe ad gangen. Ligesom batterierne i vores telefoner har katalysatorer det nemlig med at blive dårligere med tiden, og også her er det vigtigt at forstå, hvilke processer der ligger til grund for en sådan deaktivering [6]. Med lidt snilde er det muligt at måle røntgenspredning på materialer, imens de katalyserer en reaktion. Det kræver, at en specialdesignet elektrokemisk celle monteres i røntgenstrålen på en synkrotron, hvorefter det elektriske potentiale kan varieres, samtidig med at der opsamles spredningsdata.
Sådanne operando-studier gør det muligt at følge med i strukturelle ændringer, for eksempel overgangen fra en legering til en såkaldt “core/shell”-struktur i figur 2. Et andet velkendt fænomen er “agglomerering”, hvor nanopartikler sætter sig sammen i store klumper og derfor ikke længere drager nytte af den store overflade illustreret i figur 1a.
Ændringerne ledsages ofte af et fald i katalytisk aktivitet. Andre gange udgør de et nødvendigt trin i aktiveringen af en katalysator [7]. Uanset om aktiviteten stiger eller falder, giver operando-studier værdifulde pejlemærker i jagten på nye nanomaterialer, der kan forbedre levetiden af eksisterende Power-to-X katalysatorer. Desuden giver de uvurderlig information i designet af atomare cocktails, der potentielt kan give grundstoffer, som ellers ville havne på lossepladsen, ganske ædle egenskaber og dermed reducere behovet for ædelmetaller i den voksende P2X-industri.

Referencer
1. Analyseforudsætninger til Energinet, Energistyrelsen, 2023.
2. Kibsgaard, J. et al. Considerations for the Scaling-up of Water Splitting Catalysts. Nat Energy 2019, 4 (6).
3. Svane, K.L. et al. Theoretical Optimization of Compositions of High‐Entropy Oxides for the Oxygen Evolution Reaction. Angew Chem Int Ed 2022, 61 (19).
4. Partikler simuleret af Adam Sapnik.
5. Aalling-Frederiksen, O. et al. Formation and Growth Mechanism for Niobium Oxide Nanoparticles: Atomistic Insight from in Situ X-Ray Total Scattering. Nanoscale 2021, 13 (17).
6. Pittkowski, R. et al. Following Structural Changes in Iridium Nanoparticles during Oxygen Evolution Electrocatalysis with Operando X-Ray Total Scattering. Preprint December 2023.
7. Arenz, M. et al. Tracking the Catalyst Layer Depth-Dependent Electrochemical Degradation of a Bimodal Pt/C Fuel Cell Catalyst: A Combined Operando Small- and Wide-Angle X-Ray Scattering Study. ACS Catal. 2022, 12 (3).

E-mail:
Kirsten M.Ø. Jensen: kirsten@chem.ku.dk

BOKS
PDF
I en parfordelingsfunktion (PDF) skifter man blandt andet plottets x-akse fra at vise vinkler til at vise afstande. Resultatet er et relativt intuitivt histogram, der viser afstande mellem par af atomer i strukturen. Dette gøres ved at normalisere og Fourier-transformere røntgenspredningsdata fra et bredt spænd af vinkler. Processen er lidt kompliceret, men med en god dosis erfaring og det rigtige software, kan data laves til en PDF på et øjeblik.

BOKS
Ordliste
P2X: Power-to-X
PXRD: “Powder X-Ray Diffraction”
PDF: “Pair Distribution Function”
In-situ: Imens noget dannes
Operando: Imens noget virker
Vesper Martini: James Bonds yndlingsdrink.

Skrevet i: Aktuelt, Artikler fra Dansk Kemi, Energi

Seneste nyt fra redaktionen

Chemical ionization mass spectrometry in atmospheric studies

Analytisk kemiArtikler fra Dansk KemiTop19. 05. 2025

Advances in chemical ionization mass spectrometry can improve our understanding of atmospheric composition. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Varun Kumar, Institut for

Gamle processer, nye muligheder: Nyt kemisk-biologisk koncept til CO2-fangst og omdannelse

AktueltArtikler fra Dansk KemiBioteknologi14. 05. 2025

Oldgamle CO2-ædende mikroorganismer kan fange CO2 direkte fra skorstensrøg og omdanne kulstoffet til grønne molekyler. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Mads Ujarak Sieborg1 og

Centrotherm clean solutions bliver til Pfeiffer Vacuum+Fab Solutions

AktueltBranchenyt14. 05. 2025

Busch Group annoncerer, at deres brand centrotherm clean solutions bliver en del af Pfeiffer Vacuum+Fab Solutions. Fra september 2025 vil gasreduktionssystemerne til Semicon-industrien, som tidligere blev tilbudt under dette mærke, blive integreret i Pfeiffer-porteføljen og fremover være

I dag får professor Per Halkjær Nielsen Videnskabernes Selskabs Guldmedalje

Branchenyt14. 05. 2025

For blot fjerde gang i dette årtusinde uddeles Videnskabernes Selskabs Guldmedalje. Det sker i dag, hvor bakterieforsker Per Halkjær Nielsen, professor ved Institut for Kemi og Biovidenskab ved Aalborg Universitet, får den fine hæder for sit livsværk og sin holdånd. Han er manden, der kortlægger

Atmosfærisk transport af PFAS til Højarktis

AktueltArtikler fra Dansk KemiKlima og miljø28. 04. 2025

Tilstedeværelsen af PFAS-forbindelser skyldes ikke kun lokale kilder, men de kan langtransporteres i luften til selv meget fjerntliggende arktiske egne. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen

Biotek-firma bag fedme-medicin på tabletform har lagt en klar plan om samarbejde eller opkøb

AktueltMedicinalkemi21. 04. 2025

I dag er det frem med nålen, hvis man er i behandling med diverse former for fedme-medicin. Det hæmmer imidlertid udbredelsen på specielt asiatiske og afrikanske markeder, hvor der er en udtalt nålefobi. Derfor arbejder det danskstiftede biotekselskab Pila Pharma med at få udvikle deres

Dansk virksomhed vil vende produktionen af ammoniak på hovedet – ned i en lille container

AktueltBioteknologiFødevarekemi07. 04. 2025

NitroVolt, en dansk biotech-virksomhed, vil vende produktionen af ammoniak på hovedet. I stedet for den velkendte løsning, der bygger på den energitunge Haber-Bosch-proces, vil produktionen nu foregå i en container, der fx kan stå direkte ude hos en landmand. Ammoniak til kunstgødning er en slags

En EU-historie om nomenklatur – og ginseng til hunde, katte og heste!

AktueltArtikler fra Dansk KemiHistorisk kemi01. 04. 2025

Artiklen har været bragt i Dansk Kemi nr. 6, 2024 og kan læses uden illustrationer, strukturer og ligninger herunder. Læs originalartiklen her Nomenklaturudvalget får indimellem henvendelser om dansk kemisk nomenklatur fra de oversættere i EU, hvis opgave det er at oversætte EU-lovgivning på

Tysk elektrolyseanlæg er som det første i verden blevet integreret direkte i kemisk produktion

AktueltEnergi31. 03. 2025

Efter en byggeperiode på omkring to år, er BASF nye 54 megawatt elektrolyseanlæg blevet indviet. Udover at være Tyskland største, med en kapacitet til at producere op til 8.000 ton grøn brint årligt, skriver det også historie på et andet område. Brinten skal primært anvendes som råmateriale i

Dansk innovation blander sig i toppen over lande med de fleste patentansøgninger

AktueltBranchenyt31. 03. 2025

Danske virksomheder er fortsat nogle af de mest aktive i Europa til at innovere. Det viser nye tal fra Den Europæiske Patentmyndighed, EPO, som udsteder patenter, der kan dække i op til 45 lande. Vestas, Novozymes og Danmarks Tekniske Universitet har leveret de største bidrag til, at Danmark kan

Tilmeld Nyhedsbrev

Tilmeld dig til dit online branchemagasin/avis





Få fuld adgang til indlægning af egne pressemeddelelser...
Læs mere her

/Nyheder

  • Kem-En-Tec Nordic

    Sikker gelfarvning på kun 15 minutter?

  • DENIOS ApS

    Her er den oversete vej til et sundere arbejdsmiljø

  • Busch Vakuumteknik A/S

    Pfeiffer Vacuum+Fab Solutions lancerer den nye HiCube Neo RGA

  • Busch Vakuumteknik A/S

    centrotherm clean solutions bliver til Pfeiffer Vacuum+Fab Solutions

  • DENIOS ApS

    Ved du, hvornår det er tid til at vedligeholde, udskifte eller flytte dit opsamlingskar?

  • DENIOS ApS

    3 sikkerhedsfunktioner, du skal kigge efter på dit opsamlingskar

  • Holm & Halby

    VidensDage 2025: To dage i videnskabens og fremtidens tegn

  • Holm & Halby

    Holm & Halby deltager i Europe Biobank Week 2025

  • LABDAYS – Fagmesse for Laboratorieteknik

    LabDays – Almost sold out

  • Busch Vakuumteknik A/S

    Busch på IFFA 2025: Vacuum Diagnostics til intelligente vakuumløsninger til kødforarbejdning

Vis alle nyheder fra vores FOKUSpartnere ›

Seneste Nyheder

  • Chemical ionization mass spectrometry in atmospheric studies

    19.05.2025

  • Gamle processer, nye muligheder: Nyt kemisk-biologisk koncept til CO2-fangst og omdannelse

    14.05.2025

  • Centrotherm clean solutions bliver til Pfeiffer Vacuum+Fab Solutions

    14.05.2025

  • I dag får professor Per Halkjær Nielsen Videnskabernes Selskabs Guldmedalje

    14.05.2025

  • Atmosfærisk transport af PFAS til Højarktis

    28.04.2025

  • Biotek-firma bag fedme-medicin på tabletform har lagt en klar plan om samarbejde eller opkøb

    21.04.2025

  • Dansk virksomhed vil vende produktionen af ammoniak på hovedet – ned i en lille container

    07.04.2025

  • En EU-historie om nomenklatur – og ginseng til hunde, katte og heste!

    01.04.2025

  • Tysk elektrolyseanlæg er som det første i verden blevet integreret direkte i kemisk produktion

    31.03.2025

  • Dansk innovation blander sig i toppen over lande med de fleste patentansøgninger

    31.03.2025

  • Ny grundbog tager studerende på videregående uddannelser ind i den basale kemi

    26.03.2025

  • Nedrivningsarbejdere i kontakt med PCB slipper med skrækken – kun lave niveauer i blodet

    25.03.2025

  • Styrkelse af nyfundet gen kan gøre kartoflen resistent over for svampeangreb

    24.03.2025

  • Fra forskning i nanosikkerhed til mere sikker håndtering af nanomaterialer i det danske arbejdsmiljø

    21.03.2025

  • Dansk forbud mod PFAS er lige på trapperne – indsigelsesfrist mod 2024-aftale er overskredet

    20.03.2025

Alle nyheder ›

Læs Dansk Kemi online

Annoncering i Dansk Kemi

KONTAKT

TechMedia A/S
Naverland 35
DK - 2600 Glostrup
www.techmedia.dk
Telefon: +45 43 24 26 28
E-mail: info@techmedia.dk
Privatlivspolitik
Cookiepolitik