• Facebook
  • LinkedIn
  • KONTAKT
  • ANNONCERING
  • OM KEMIFOKUS
  • PARTNERLOGIN

KemiFOKUS

Fokus på kemi

  • Analytisk kemi
  • Arbejdsmiljø/Indeklima
  • Biokemi
  • Biologi
  • Bioteknologi
  • Branchenyt
  • Energi
  • Fødevarekemi
  • Historisk kemi
  • Kemiteknik
  • Kemometri
  • Klikkemi
  • Klima og miljø
  • Lovgivning og patenter
  • Medicinalkemi
  • Nanoteknologi
  • Organisk kemi
  • Artikler fra Dansk Kemi

Analytisk kemiArtikler fra Dansk Kemi28. 08. 2021 | Heidi Thode

Fluxomics

Analytisk kemiArtikler fra Dansk Kemi28. 08. 2021 By Heidi Thode

Læs originalartiklen her

Artiklen har været bragt i Dansk Kemi nr. 4, 2021 og kan læses uden illustrationer, strukturer og ligninger her.

Fluxomics er en dynamisk tilgang til at undersøge biokemiske reaktioner inden for en organisme eller et biologisk system.

Af Johnny Östman, Sveriges Landbrugsuniversitet og Hanne Christine Bertram

Metabolomics, der beror på at måle et så stort antal metabolitter som muligt i et biologisk system, er blevet et udbredt redskab inden for mange områder af biovidenskab. Der er således et hav af anvendelser af metabolomics, der ofte bruges til at forstå, hvordan ydre påvirkninger påvirker et biologisk system. Som få eksempler bruges metabolomics blandt andet til at undersøge, hvordan planter reagerer på det omgivende klima og miljø [1]; hvordan kosten påvirker vores krop [2]; hvordan virus, infektioner og sygdom sætter ind [3,4], men også hvordan fermenteringsprocesser forløber [5] og hvordan bakterier udøver symbiotiske interaktioner [6]. For alle eksempler gælder det dog, at metabolomics har den begrænsning, at teknikken kun giver information om et øjebliksbillede.

Statisk versus dynamisk
Måling af koncentrationer er grundlaget for mange analysemetoder, og kan også betragtes som det basale formål i metabolomics. Mængden af en metabolit i et biologisk system fortæller dog ikke nødvendigvis hele historien. I biologiske systemer er der mange metabolitter, som er under homeostatisk kontrol og deres koncentration varierer således kun inden for et begrænset interval. Man kan forestille sig et biologisk system, hvor der er et kontinuerligt forbrug af en metabolit under homeostatisk kontrol. I dette biologiske system vil en produktion af metabolitten eller en optagelse af metabolitten være nødvendig for at opretholde en homeostatisk tilstand. Hvis forbruget stiger eller falder, så vil en samtidig stigning eller fald i produktionen eller optagelsen være afgørende.
I nogle af i disse tilfælde vil koncentrationen af den pågældende metabolit forblive den samme, og ændringen kan ikke detekteres ved traditionelle koncentrationsmålinger, skønt der kan være klare biologiske forskelle. Sådanne ændringer i produktionen eller forbrug kaldes metaboliske fluxændringer, og analysen af sådanne ændringer går under begrebet flux-analyse. Begrebet metabolisk flux er præsenteret i figur 1. Situationen med, at et statisk øjebliksbillede ikke siger noget om fluxen, er også velkendt for bilister i trafikken; en stor mængde biler på vejen siger ikke nødvendigvis noget om fluxen.

Fluxændringer på matematisk form
Den metaboliske flux af en enkelt reaktion kan udtrykkes som i ligning 1, der betragter en ændring i koncentration over tid, hvor Φ betegner flux, n angiver mængden af stof, V betegner volumenet af metabolitpoolen og Δt angiver tidsintervallet. Fluxen kan være enten positiv eller negativ, og i en homeostatisk situation vil den være nul. Dette betyder for eksempel, at et øget forbrug kan kompenseres med en stigning i import, produktion eller en kombination af begge, uden at der sker en koncentrationsændring. Fluxanalyse kan også udvides til at inkludere mange reaktioner og deres reaktionshastigheder i et system samtidigt. Denne tilgang kaldes ofte fluxomics, analogt med andre systembiologiske tilgange som genomics, transcriptomics, proteomics og metabolomics.

Isotoper og deres opdagelse
Isotoper er varianter af samme grundstof, der kun adskiller sig ved antallet af neutroner i deres kerner. Isotoper kan være enten stabile eller ustabile, dvs. radioaktive isotoper. Historien om, hvordan isotoper blev opdaget, fandt sted i den første del af det 20. århundrede. To foreslåede elementer med tydelige forskelle i radioaktiv opførsel, viste sig at være fuldstændig uadskillelige af kemikalier og beviste dermed indirekte eksistensen af radioaktive isotoper i 1907 [7]. Hypotesen om, at kemiske grundstoffer består af blandinger af enheder med forskellige atomvægte, kom nogle år senere og er ofte krediteret Frederick Soddy [8], selvom den svenske nobelpristager Theodor Svedberg havde fremført hypotesen forinden [9].
Det første eksperimentelle bevis for eksistensen af stabile isotoper blev gjort af Joseph John Thomson i 1912 med et apparat, han kaldte et spektrograf [10], og i 1913 rapporterede han, at prøver af neon altid indeholder molekyler med atomvægte på både 20 og 22 [11]. Der blev sået tvivl om arten af Thomsons ukendte gas med atomvægt 22 i nogen tid. Det ultimative bevis for eksistensen af stabile isotoper blev leveret af Francis William Aston efter studier af neon med et forbedret spektrograf, hvor han også opdagede den tredje stabile isotop af neon, dvs. 21Ne [12]. Efter opdagelsen af neutronen [13], blev isotopernes natur fuldt ud forstået.

Sporing med isotoper
Forskellige isotoper af et grundstof deler kemiske egenskaber. Den vigtigste undtagelse er en forskel i kinetik, da isotoper med højere masse reagerer langsommere end lettere isotoper [14]. Jo højere atomnummeret er for et grundstof, des mindre påvirkning har massen af en yderligere neutron på kinetikken, da indvirkningen på den samlede masse af atomet er relativt mindre. På grund af deres identiske egenskaber, er isotoper velegnede til at følge kemiske reaktioner ved at spore mærkede atomer.
Både stabile og ustabile (radioaktive) isotoper kan bruges til sporing af en kemisk forbindelse. Et epokegørende eksperiment med isotoper blev udført ved mærkning med radioaktivt bly [15,16]. Og brugen af blandt andet 3H og 14C har spillet stor betydning i forhold til at kortlægge biokemiske reaktioner og reaktionsmekanismer [17]. Brugen af stabile isotoper kom dog på banen allerede i 1930’erne, og studier med brug af 2H, 13C og 15N blev rapporteret [18-20]. I dag er brugen af stabile isotoper i metaboliske sporingseksperimenter langt mere almindelig end radioaktive isotoper, hvilket blandt andet hænger sammen med et ønske om at begrænse forskernes udsættelse for radioaktivitet og bedre målingsteknikker til stabile isotoper.

Flux-målinger
Man skelner mellem to typer af flux-målinger: steady-state og ikke-steady-state teknikker. For steady-state-teknikken fungerer en stabil isotop som et sporstof, der leveres kontinuerligt med en given hastighed, for eksempel ved infusion. Forholdet mellem det stabile isotop-sporstof og den endogene metabolit, der er af interesse (dvs. som beriges med isotop-sporstoffet), vil nå en stabil tilstand efter nogen tid, når forbrug og produktion har opnået ligevægt. Fluxen kan derefter beregnes ud fra infusionshastigheden og den berigelse, der måles i en prøve, der er taget under steady state [21].
Beregning af kinetik under ikke-steady-state forhold er mere krævende. Men det er en vigtig teknik for at få viden om de mekanismer, der er involveret, når et biologisk system påvirkes/stimuleres, for eksempel under fysisk aktivitet eller under indtagelse af mad. Prøverne tages til forskellige tidspunkter før og efter påvirkningen/stimuleringen, og kinetiske parametre kan beregnes ud fra forskelle i koncentration og berigelse på de forskellige tidspunkter ved hjælp af de såkaldte Steele-ligninger [22].
Når de isotop-berigede prøver er blevet samlet, analyseres disse typisk ved hjælp af analytiske teknikker baseret på massespektrometri (MS) eller kernemagnetisk resonans (NMR), der kan måle berigelsen. Ved at måle omfang og arten af inkorporeringen af den stabile isotop, er det både muligt at beregne fluxen; at kortlægge metaboliske reaktioner, og at estimere de relative bidrag af specifikke reaktioner til dannelsen af metabolitter [23]. Forskelle i flux kan også måles indirekte ved at sammenligne berigelsesgraderne efter forskellige behandlinger [24]. Antallet af atomer i et molekyle, der er mærket med isotopen, kan variere fra ingen til alle atomer. Disse varianter kaldes isotopologer og betegnes almindeligvis med M + X, hvor X er antallet af mærkede atomer. Molekyler med det samme antal inkorporerede mærkede atomer kan have de mærkede atomer i forskellige positionerne. Disse varianter af isotopmærkede molekyler kaldes isotopomerer og kan identificeres ved NMR og ved at studere MS fragmenter. Isotopologer analyseres almindeligvis ved MS, da de kan skelnes selv med MS-udstyr med lav opløsning.

Eksempel på anvendelse i ernæringsforskningen
Vi gennemførte et studie, hvor forsøgspersoner fik infuseret 2H-mærket glukose ([6,6-2H2]glukose) under indtagelse af to forskellige måltider: hvidt, raffineret hvedemelsbrød eller fuldkornsrugbrød [25]. Efter måltiderne var indtaget, blev der løbende taget blodprøver ud, hvor isotop-berigelsen blev målt ved MS, hvilket gav mulighed for at måle optagelsen af glukose fra blodbanen og ind i cellerne (“clearance”). Ved hjælp af denne flux-analyse viste studiet, at optagelsen af glukose skete langsommere efter indtag af fuldkornsrugbrød sammenlignet med efter indtag af hvidt hvedebrød. Når man på samme forsøgspersoner målte glukose i blodet på traditionel vis, kunne man ikke detektere nogen forskelle mellem de to typer af brød, som formentlig skyldes en homeostatisk kontrol af blodets glukose-koncentration. Dermed demonstrerer studiet, at flux-målinger giver os et indblik i, hvor hurtigt og hvor meget glukose, der optages af cellerne, som vi ikke kan få ved “statiske” målinger af blodets glukose-indhold.

Epilog
Væsentlige dele af artiklen er modificeret fra ph.d.-afhandlingen “Metabolomics and flux analysis by mass spectrometry” af Johnny Östman fra Sveriges Landbrugsuniversitet i Uppsala.

E-mail:
Johnny Östman: johnny.ostman@slu.se

Referencer
1. R. Nakabayashi & K. Saito. (2015). Integrated metabolomics for abiotic stress responses in plants. Curr. Opion Plant Biol. 24, 10-16.
2. H.C. Bertram & L.M.A. Jakobsen (2018). Nutrimetabolomics – integrating metabolomics in nutrition to disentangle intake of animal-based foods. Metabolomics, 14,34.
3. R. Madsen et al. (2010). Chemometrics in metabolomics-A review in human disease diagnosis. Anal. Chim Acta, 659, 23-33.
4. D.J. Beale et al. (2019) Untargeted metabolomics analysis of the upper respiratory tract of ferrets following influenza A virus infection and oseltamivir treatment.
5. A. Trimigno et al. (2020). An NMR Metabolomics Approach to Investigate Factors Affecting the Yoghurt Fermentation Process and Quality. Metabolites, 10, 293.
6. L.M.A. Jakobsen et al. (2019). Lactose and Bovine Milk Oligosaccharides Synergistically Stimulate B. longum subsp. longum Growth in a Simplified Model of the Infant Gut Microbiome. J. Proteome Res. 18, 3086-3098.
7. H.N. McCoy & W.H. Ross, W.H. (1907). The Specific Radioactivity of Thorium and the Variation of the Activity with Chemical Treatment and with Time. J. Am. Chem. Soc. 29, 1709-1718.
8. F. Soddy (1910). Radioactivity. Ann. Rep. Progr. Chem. 7, 256-286.
9. D. Strömholm & T. Svedberg, T. (1909). Untersuchungen über die Chemie der radioaktiven Grundstoffe. II. Zeitschrift für anorganische Chemie, 63, 197-206.
10. J.J. Thomson (1912). XIX. Further experiments on positive rays. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 24, 209-253.
11. J.J. Thomson (1913). Bakerian Lecture: – Rays of positive electricity. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 89, 1-20.
12. F.W. Aston. (1920). XLIV. The constitution of atmospheric neon. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39, 449-455.
13. J. Chadwick (1932). The existence of a neutron. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 136, 692-708.
14. E.W. Washburn & H.C. Urey (1932). Concentration of the H2 Isotope of Hydrogen by the Fractional Electrolysis of Water. Proceedings of the National Academy of Sciences of the United States of America, 18, 496-498.
15. G.V. Hevesy & F. Paneth (1913). Die Löslichkeit des Bleisulfids und Bleichromats. Zeitschrift für anorganische Chemie, 82, 323-328.
16. G. Hevesy (1923). The Absorption and Translocation of Lead by Plants: A Contribution to the Application of the Method of Radioactive Indicators in the Investigation of the Change of Substance in Plants. Biochem. J. 17, 439-445.
17. G. Lappin (2015). A historical perspective on radioisotopic tracers in metabolism and biochemistry. Bioanalysis, 7, 531-540.
18. R. Schoenheimer et al. (1939). Studies in protein metabolism. The metabolic activity of body proteins investigated with l (-)-leucine containing two isotopes. J.  Biol. Chem. 130, 703-732.
19. R. Schoenheimer & D. Rittenberg (1935). Deuterium as an indicator in the study of intermediary metabolism. Science, 82, 156-157.
20. H.G. Wood et al. (1940). Heavy carbon as a tracer in bacterial fixation of carbon dioxide. J. Biol. Chem. 135, 789-790.
21. I.-Y. Kim et al. (2016). Applications of stable, nonradioactive isotope tracers in in vivo human metabolic research. Experimental & Molecular Medicine, 48(1), e203.
22. R. Steele (1959). Influences of Glucose Loading and of Injected Insulin on Hepatic Glucose Output. Annals of the New York Academy of Sciences, 82, 420-430.
23. C. Jang et al. (2018). Metabolomics and Isotope Tracing. Cell, 173, 822-837.
24. M. El-Azzouny et al. (2014). Increased glucose metabolism and glycerolipid formation by fatty acids and GPR40 receptor signaling underlies the fatty acid potentiation of insulin secretion. J.Biol. Chem 289, 13575-13588.
25. J. Östman et al. (2019). Glucose Appearance Rate Rather than the Blood Glucose Concentrations Explains Differences in Postprandial Insulin Responses between Wholemeal Rye and Refined Wheat Breads – Results from A Cross-Over Meal Study. Mol. Nutr. Food Res. 63, 1800959.

Skrevet i: Analytisk kemi, Artikler fra Dansk Kemi

Seneste nyt fra redaktionen

ISO 13391 og ISO 25078

Artikler fra Dansk KemiGrøn omstilling18. 02. 2026

– beregning af skovens klimaeffekter En ny international ISO-standard for beregning af skovens klimaeffekter giver emnet fornyet aktualitet. Artiklen har været bragt i Dansk Kemi nr. 1, 2026 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af

Ti, Mo, Cs, Pr, Nd – hvad har disse fem til fælles?

Artikler fra Dansk KemiHistorisk kemi18. 02. 2026

Artiklen har været bragt i Dansk Kemi nr. 1, 2026 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Kemisk Forenings Nomenklaturudvalg (KFNU) i dets nuværende inkarnation daterer sig fra 1940. Udvalgets første større bedrift var i 1952 at nedkomme med

CleanCloud målekampagne i Nordøstgrønland

Artikler fra Dansk KemiKlima og miljø18. 02. 2026

CleanCloud er et EU-finansieret forskningsprojekt, hvor der blandt andet er udført to målekampagner på Villum Research Station (VRS) på Station Nord i Nordgrønland, med det formål at undersøge, hvordan partikler og skyer interagerer. Artiklen har været bragt i Dansk Kemi nr. 1, 2026 og kan læses

Supporting chemical thermodynamics:

Artikler fra Dansk KemiKemiteknik18. 02. 2026

The role of infrared spectroscopy The use of molecular vibrations to probe structure in hydrogen bonding liquids. Artiklen har været bragt i Dansk Kemi nr. 1, 2026 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) By Evangelos Drougkas, Georgios

To naturfagslærere fra slutningen af 1800-tallet

Artikler fra Dansk KemiHistorisk kemi18. 02. 2026

Naturvidenskab kom ind i latinskolen – den lærde skole – i midten af 1800-tallet. Hvad var det for lærere, der underviste i naturvidenskab i den lærde skole og realskolen? Artiklen har været bragt i Dansk Kemi nr. 1, 2026 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs

Svampe giver køerne kamp til stregen, når det kommer til produktion af mælkeprotein

Artikler fra Dansk KemiBioteknologi18. 02. 2026

Vores fødevareproduktion er alt for klimabelastende, og én af løsningerne findes i mælkeprotein produceret af svampe med en teknologi, der kaldes præcisionsfermentering. Artiklen har været bragt i Dansk Kemi nr. 1, 2026 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs

Konsekvenserne af kunstig iltning af søer

Artikler fra Dansk KemiKlima og miljø18. 02. 2026

- effektvurdering på Danmarks længst iltede søer: Hald Sø og Furesø. Artiklen har været bragt i Dansk Kemi nr. 1, 2026 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Sofie Kamlarczyk1, Henrik Skovgaard2, Julia Groth1, Theis Kragh1 og Kasper

Strontium understøtter tandemaljens robusthed – men hvordan?

Artikler fra Dansk KemiMedicinalkemi18. 02. 2026

Fluorid styrker tænders emalje ved at erstatte hydroxid i hydroxyapatit og sænke opløseligheden. Strontium styrker også tænders emalje, selv om strontium-analogen til Ca5(OH)(PO4)3 er mere opløselig. Artiklen har været bragt i Dansk Kemi nr. 1, 2026 og kan læses uden illustrationer, strukturer

Hvad sker der på spildevandsanlægget, når ”det pisser ned”?

Analytisk kemiArtikler fra Dansk Kemi18. 02. 2026

Hvordan moderne kemiske analysemetoder hjælper os til at forstå dynamikken af mikroforureninger i spildevandet. Artiklen har været bragt i Dansk Kemi nr. 1, 2026 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Kristoffer Kilpinen1, Selina

Per- og polyfluorerede alkylstoffer (PFAS)

Artikler fra Dansk KemiKlima og miljøTop18. 02. 2026

– et problem i hele Kongeriget Danmark Seneste års monitering viser, at miljøet og mennesker i Danmark, Færøerne og Grønland kan være kritisk belastet af per- og polyfluorerede alkylstoffer (de såkaldte PFAS). I Danmark har brugen af PFAS – i særligt industrien, landbruget og brandøvelser – været

Tilmeld Nyhedsbrev

Tilmeld dig til dit online branchemagasin/avis





Få fuld adgang til indlægning af egne pressemeddelelser...
Læs mere her

/Nyheder

  • DENIOS ApS

    Lithiumbatterier: Sådan sikrer du din virksomhed

  • Busch Vakuumteknik A/S

    Energiomkostninger reduceret med 50% via et centraliseret vakuumsystem

  • Kem-En-Tec Nordic

    Nyt produkt – Streptavidin

  • DENIOS ApS

    Sådan fejrer vi valentinsdag hos DENIOS

  • Holm & Halby

    Holm & Halby klar med seminarprogram for foråret 2026

  • Holm & Halby

    TÜV-certificering styrker dokumenteret kvalitet hos Holm & Halby

  • Holm & Halby

    Workshop sætter fokus på Green Chemistry i sporstofanalysen

  • Holm & Halby

    Fokus på reproducerbare bioprocesser i ny international webinarserie

  • DENIOS ApS

    Olien flød ud i vandet – men én ting inddæmmede den

  • MD Scientific

    Kolonne til hurtig måling af ADCC-aktivitet

Vis alle nyheder fra vores FOKUSpartnere ›

Seneste Nyheder

  • ISO 13391 og ISO 25078

    18.02.2026

  • Ti, Mo, Cs, Pr, Nd – hvad har disse fem til fælles?

    18.02.2026

  • CleanCloud målekampagne i Nordøstgrønland

    18.02.2026

  • Supporting chemical thermodynamics:

    18.02.2026

  • To naturfagslærere fra slutningen af 1800-tallet

    18.02.2026

  • Svampe giver køerne kamp til stregen, når det kommer til produktion af mælkeprotein

    18.02.2026

  • Konsekvenserne af kunstig iltning af søer

    18.02.2026

  • Strontium understøtter tandemaljens robusthed – men hvordan?

    18.02.2026

  • Hvad sker der på spildevandsanlægget, når ”det pisser ned”?

    18.02.2026

  • Per- og polyfluorerede alkylstoffer (PFAS)

    18.02.2026

  • Grønlandske miner og metaller  

    10.02.2026

  • 2026-udgaven af Torkil Holm Prisen måtte deles af to markante forskningsprofiler

    03.02.2026

  • Italienskfødt, dansk-bosat forsker modtager årslegat for at sætte molekyler på menuen

    27.01.2026

  • To år med enhedspatentet og Enhedspatentdomstolen

    26.01.2026

  • Materialer til konstruktion af små modulære atomreaktorer med smeltet fluorid-salt

    20.01.2026

Alle nyheder ›

Læs Dansk Kemi online

Annoncering i Dansk Kemi

KONTAKT

TechMedia A/S
Naverland 35
DK - 2600 Glostrup
www.techmedia.dk
Telefon: +45 43 24 26 28
E-mail: info@techmedia.dk
Privatlivspolitik
Cookiepolitik