• Facebook
  • LinkedIn
  • KONTAKT
  • ANNONCERING
  • OM KEMIFOKUS
  • PARTNERLOGIN

KemiFOKUS

Fokus på kemi

  • Analytisk kemi
  • Arbejdsmiljø/Indeklima
  • Biokemi
  • Biologi
  • Bioteknologi
  • Branchenyt
  • Energi
  • Fødevarekemi
  • Historisk kemi
  • Kemiteknik
  • Kemometri
  • Klikkemi
  • Klima og miljø
  • Lovgivning og patenter
  • Medicinalkemi
  • Nanoteknologi
  • Organisk kemi
  • Artikler fra Dansk Kemi

EnergiNanoteknologi01. 10. 2017 | Katrine Meyn

Lagring af solenergi i molekylære batterier

EnergiNanoteknologi01. 10. 2017 By Katrine Meyn

Forskerne ved ”Center for Exploitation of Solar Energy” på Kemisk Institut, Københavns Universitet, arbejder på at finde en bæredygtig måde til at løse verdens stadig stigende energibehov. Specielt fokuseres der på, hvordan solenergi kan lagres i molekyler. Her har det fotoaktive molekyle dihydroazulen, DHA, vist sig at være specielt lovende.

Læs originalartiklen her

Artiklen har været bragt i Dansk Kemi nr. 10, 2017 og kan læses uden illustrationer, strukturer og ligninger herunder.

Af Stine T. Olsen, Mogens Brøndsted Nielsen, Henrik G. Kjaergaard og Kurt V. Mikkelsen, Kemisk Institut, Københavns Universitet

Mørket har lagt sig, lyset tændes, kaffemaskinen brygger aftenkaffen, smartphonen ligger i opladeren, komfuret kører på højeste blus, mens bøfferne steges, børnene spiller Playstation – alt imens el-måleren ude i gangen tikker lystigt op i watt-forbruget.
Sidste års samlede energiforbrug udgjorde 552 x 1018 J på verdensplan, hvilket svarer til en kapacitet på 17 TW [1]. Dette energiforbrug har været og er stadig stødt stigende, og det estimeres, at det vil fordobles inden for de næste 30 år. Hidtil er denne store energiefterspørgsel hovedsageligt blevet mødt af fossile brændstoffer (86% i 2015), men de senere års øget fokus på bæredygtighed og grøn energi har ført forskningen over på udnyttelsen af solens enorme ressourcepotentiale. Solen leverer mere energi på en time end hvad verdenen bruger på et helt år. Dog vil en stigende andel af fluktuerende solenergi grundet dag-nat, sol-skyet og sommer-vinter kræve en effektiv lagringsmetode for at sikre energiforsyningen hele dagen og året rundt og dermed være sammenlignelig med fossile brændstoffer.
Lagring af solens energi kan ske i forskellige energiformer. Effektive og kommercielt tilgængelige lagringsløsninger for energi i form af elektricitet er allerede kendt i dag i form af batterier, højtliggende vandreservoirer, elektrolyse, etc. Lagring i form af varme er dog langt fra så effektiv med de nuværende kommercielle teknologier, som bl.a. inkluderer sten- og vandbaserede lagre, da disse materialer har en relativ lav varmekapacitet (ofte refereret til i litteraturen som sensible heat storage, lagringskapacitet ~10 Wh/kg = 36 kJ/kg). På forskningsstadiet er der dog mere lovende metoder på vej, såsom varmelagring ved faseskiftende materialer (omkring 10 gange så lovende som sensible heat storage) og brugen af fotoaktive molekyler, også kendt som MOST-systemer (MOlecular Solar Thermal systems) [2]. Specielt lagring ved brug af MOST-systemer er attraktiv, hvis energitætheden kan bringes på niveau med Li-ion-batterier, 280 Wh/kg = 1.0 MJ/kg, hvilket synes muligt. Dog er det ikke ligegyldigt, hvilket fotoaktivt molekyle man vælger til sit MOST-system. Dette har forskerne ved ”Center for Exploitation of Solar Energy” ved Københavns Universitet sat fokus på.

Molekylære sol-varmebatterier:
MOST-systemer anvender fotoaktive molekyler A, der er i stand til absorbere fotoner fra solen og herved gennemgå en reversibel isomerisering til en metastabil form B. Denne højenergi-form vil vende tilbage til A under frigivelse af den lagrede energi, ∆E, i form af varme, se figur 1. Processen er en lukket energicyklus, idet kun varme frigives til omgivelserne, hvilket er yderst fordelagtigt sammenlignet med åbne processer som f.eks. forbrænding af fossile brændstoffer, der foruden energi også frigiver CO2. For at opnå en så effektiv som mulig lagring af solvarmen, skal A vælges med omhu ud fra følgende MOST-kriterier:
1) Absorption af sollyset i området 300-750 nm.
2) Absorptionsspektrene af de to isomerer A og B må helst ikke overlappe.
3) Stort kvanteudbytte: fotoreaktionen skal forløbe effektivt.
4) Høj lagringskapacitet: energiforskellen mellem de to isomerer A og B skal være stor.
5) Lang lagringstid: levetiden af B-isomeren skal være lang.
6) Kontrol over varmefrigivelsen: kontrolmekanisme for tilbagereaktionen.
7) Hverken A eller B må undergå fotodegradering.
Energilagring på molekyleniveau har den fordel, at vi er i stand til at udnytte kemien og dermed skræddersy det perfekte sol-varmebatteri ud fra små ændringer i molekylestrukturen af det fotoaktive molekyle A. Hidtil har bl.a. norbornadien været undersøgt, idet den besidder en stor lagringskapacitet (1 MJ/kg). Dog forløber norbornadiens fotoisomerisering med et lavt kvanteudbytte og kun i UV-området [3]. I skrivende stund er der endnu ikke fundet et molekyle, som opfylder alle betingelser, men vi har i de sidste fire år haft en lovende kandidat i kikkerten: det fotoaktive molekyle dihydroazulen, DHA.

Dihydroazulen som sol-varmebatteri
Det fotoaktive system DHA/VHF er allerede i sin oprindelige form et yderst lovende sol-varmebatteri, se figur 2. Eksperimentelt er det observeret, at DHA-systemet møder ovenstående kriterier 1-3, da DHA absorberer i det synlige område omkring et maksimum på 353 nm, hvorimod VHF absorberer omkring 470 nm (i acetonitril; dog også lidt ved 353 nm). Hermed forventes de to isomerer ikke at konkurrere nævneværdigt om absorptionen af sollyset ved 353 nm. Ydermere foregår den lys-inducerede omdannelse af DHA til VHF med højt kvanteudbytte (55% i acetonitril), og tilbagereaktionen fra VHF til DHA er ikke lys-induceret. Dvs. man kan kvantitativt omdanne al DHA til VHF ved belysning. Dog er systemet begrænset af VHFs relative korte halveringstid på 218 min (i acetonitril-opløsning), hvilket gør lagring hen over længere perioder såsom sommer-vinter umulig. Ligeledes har DHA i sin oprindelige form en lav lagringskapacitet, 0.11 MJ/kg [4], sammenlignet med et teoretisk estimeret muligt maksimum på 1 MJ/kg for MOST systemer [2a]. I vores center har vi siden 2013 arbejdet på at modificere DHA/VHF-systemet, så det kan møde MOST-kriterierne bedre, men samtidig uden at påvirke de allerede fordelagtige iboende egenskaber. I vores arbejde kombinerer vi kvantekemisk modellering med syntese og spektroskopiske målinger.

Skræddersyning af DHA-molekylet
Centeret på KU har forsøgt at kortlægge en strategi for at gøre DHA-systemet optimalt mht. de fleste af MOST-kriterierne. Kvantekemiske beregninger har forudsagt adskillige interessante målmolekyler, som er blevet fremstillet og studeret [5-8]. Figur 3 illustrerer nogle af centerets resultater – med fokus på forøgelse af lagringskapaciteten og lagringstiden af DHA-systemet ved at funktionalisere systemet på forskellig vis (alle ændringer er markeret med grønt i figuren). Det er tydeligt, at små ændringer i den molekylære struktur af DHA kan give anledning til store effekter, hvis ændringerne vælges med omtanke.
Ved blot at erstatte den ene CN-gruppe i den oprindelige DHA (8) med et H (5) ses en mærkbar ændring i både lagringstiden og kapaciteten [5]. Lagringskapaciteten er mere end fordoblet, og samtidigt ændres lagringstiden fra timer til år, hvilket er yderst fordelagtigt mht. brug i sol-varmebatterier. Lagringen er dog lidt for effektiv, da vi ikke kan sætte tilbagereaktionen i gang, uden at molekylet nedbrydes! Skiftes H’et ud med en methylgruppe fås en vis grad af tilbagereaktion, men stabiliteten er stadig ikke god. Ved at indsætte en sidegruppe i form af en elektrondonerende NH2 (4 og 6) opnås atter en markant ændring [7], dog mest udtalt for systemet med to CN-grupper. Det er ikke underordnet, hvor NH2-gruppen placeres, idet kun en placering i position 3 medfører en stigning i lagringskapaciteten. Denne favorable position er både gældende for DHA med en og med to CN-grupper. Omvendt vil en elektrondonerende gruppe på DHA’s position 3 desværre fremme tilbagereaktionen [9] og dermed have en negativ effekt på lagringstiden. Generelt betyder en substituents placering og elektroniske egenskaber meget for tilbagereaktionens hastighed. Vi har således fundet, at VHFs omdannelse til DHA fremmes af elektrontiltrækkende grupper på DHA’s position 2 og af elektrondonerende grupper på position 3 eller 7 [9,10].
Ved at gøre DHA særligt stabil ved at introducere en aromatisk benzenring i strukturen (1-3) opnås i særdeleshed en stor energiforskel imellem DHA og VHF, idet denne aromaticitet vil gå tabt i VHF-isomeren [8]. Forøgelsen i energiforskellen sker dog på bekostning af VHF-isomerens levetid, som bliver ultrakort, og på bekostning af DHAs fotoaktive egenskaber (undergår uønskede lys-inducerede reaktioner). Levetiden vil dog formentligt kunne øges ved at skifte den ene CN i 2 ud med et H.
Figur 3 giver kun et lille indblik i nogle af de variationer af DHA-strukturen, som vi arbejder med i vores center. I lidt mere eksotiske makrocykliske molekyler indeholdende to DHA-enheder har vi vist, at energiafgivelsen kan ske trinvist for de to korresponderende VHF-enheder – dvs. den kan ske på to tidsskalaer, en hurtig (timer) til øjeblikkelige behov og en langsom (uger) til langtidsbehov [11]. Vi har endvidere vist, at kobber-ioner kan sætte gang i VHF-til-DHA tilbagereaktionen [12] og arbejder derved på at imødekomme kriterium 6 for de systemer, hvor tilbagereaktionen er langsom. I et optimalt system er tilbagereaktionen sat helt i stå, men kan sættes i gang af en katalysator. Ovenstående homogene katalyse med kobber-ioner i opløsning er måske ikke den mest ideelle metode, men et første vigtigt skridt på vejen.
Vores tilgang er meget systematisk, da vi ønsker at lære, hvad konsekvensen af hver lille strukturel ændring er. Ved at kombinere de enkelte modifikationer, hvoraf nogle er fordelagtige for lagringskapaciteten, andre for lagringstiden, andre igen for stabiliteten, håber vi at kunne skræddersy det helt rigtige molekyle, som kan opfylde omend ikke alle, så de fleste af de ønskede kriterier.

MOST-applikationer
Foruden fordelen i at være et lukket system og dermed bæredygtig, besidder MOST-systemer en række fordelagtige applikationer. Først og fremmest agerer molekyler på mikroskopisk niveau, hvilket muliggør små og transportable varmebatterier. Dette kan der f.eks. drages nytte af under opvarmning af telte, udendørs madlavning, varmedunke, osv. Ydermere introducerer organiske molekyler muligheden for et fleksibelt og transparent design, og dermed for implementation af varmebatterier i f.eks. vinduer og maling eller til af-isning af bilruder.
Et hybrid solanlæg bestående af et MOST-system kombineret med et vand solvarmeanlæg (concentrated solar power, CSP) kunne introducere en såkaldt opgradering til de nuværende implementerede solvarmeanlæg med cirkulerende varmeoverførselsvæsker. Her skal molekylerne gøres opløselige i vand eller et alkoholisk medium.
De brede applikationsmuligheder kombineret med den bæredygtige tilgang gør MOST-systemer til et videnskabeligt område, hvor en systematisk tilegnelse af fundamental viden om fotoisomerbare systemer måske kan munde ud i nye løsninger til verdens stadig stigende energibehov.

Tak til Københavns Universitet og Carlsbergfondet for økonomisk støtte.

Referencer
1. BP, Statistical Review of World Energy, BP Annual Technical Report, 2016.
2. a) Kucharski, T.J.; Tian, Y.; Akbulatov, S.; Boulatov, R. Energy Environ. Sci. 2011, 4, 4449-4472; b) Moth-Poulsen, K. i Organic Synthesis and Molecular Engineering (Red.: Nielsen, M.B.), Wiley, Hoboken, USA, 2014, pp. 179-196; c) Lennartson, A.; Roffey, A.; Moth-Poulsen, K. Tetrahedron Lett. 2015, 56, 1457-1465.
3. Yoshida, Z.-I. J. Photochem. 1985, 29, 27-40.
4. Olsen, S.T.; Elm, J.; Storm, F.E.; Gejl, A.N.; Hansen, A.S.; Hansen, M.H.; Nikolajsen, J.R.; Nielsen, M.B.; Kjaergaard, H.G.; Mikkelsen, K.V. J. Phys. Chem. A 2015, 119, 896-904.
5. Cacciarini, M.; Skov, A.B.; Jevric, M.; Hansen, A.S.; Elm, J.; Kjaergaard, H.G.; Mikkelsen, K.V.; Nielsen, M.B. Chem. Eur. J. 2015, 21, 7454-7461.
6. Broman, S.L.; Kushnir, O.; Rosenberg, M.; Kadziola, A.; Daub, J.; Nielsen, M.B. Eur. J. Org. Chem. 2015, 4119-4130.
7. Hansen, M.H.; Elm, J.; Olsen, S.T.; Gejl, A.N.; Storm, F.E.; Frandsen, B.N.; Skov, A.B.; Nielsen, M.B.; Kjaergaard, H.G.; Mikkelsen, K.V. J. Phys. Chem. A 2016, 120, 9782-9793.
8. a) Skov, A.B.; Broman, S.L.; Gertsen, A.S.; Elm, J.; Jevric, M.; Cacciarini, M.; Kadziola, A.; Mikkelsen, K.V.; Nielsen, M.B. Chem. Eur. J. 2016, 22, 14567-14575; b) Skov, A.B.; Petersen, J.F.; Elm, J.; Frandsen, B.N.; Santella, M.; Kilde, M.D.; Kjaergaard, H.G.; Mikkelsen, K.V.; Nielsen, M.B. ChemPhotoChem, 2017, 1, 206-212.
9. Kilde, M.D.; Hansen, M.H.; Broman, S.L.; Mikkelsen, K.V.; Nielsen, M.B. Eur. J. Org. Chem. 2017, 1052-1062.
10. Broman, S.L.; Jevric, M.; Nielsen, M.B. Chem. Eur. J. 2013, 19, 9542-9548.
11. a) Petersen, A.U.; Broman, S.L.; Olsen, S.T.; Hansen, A.S.; Du, L.; Kadziola, A.; Hansen, T.; Kjaergaard, H.G.; Mikkelsen, K.V.; Nielsen, M.B. Chem. Eur. J. 2015, 21, 3968-3977; b) Vlasceanu, A.; Broman, S.L.; Hansen, A.S.; Skov, A.B.; Cacciarini, M.; Kadziola, A.; Kjaergaard, H.G.; Mikkelsen, K.V.; Nielsen, M.B. Chem. Eur. J. 2016, 22, 10796-101800.
12. Cacciarini, M.; Vlasceanu, A.; Jevric, M.; Nielsen, M.B. Chem. Commun., 2017, 53, 5874-5877.

Skrevet i: Energi, Nanoteknologi

Seneste nyt fra redaktionen

Trinatriumhexafluo… hvad for noget?

Artikler fra Dansk KemiHistorisk kemiTop09. 06. 2025

Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) I år fejrer man internt i IUPAC 20-året for offentliggørelsen af The Red Book (i det følgende blot "RB2005") med anbefalinger vedrørende

Prisen på grisen: Hvad koster oprensning af beskidt CO2?

Artikler fra Dansk KemiGrøn omstillingTop02. 06. 2025

Hvor rent er CO2 fra CO2-fangst? Og hvor dyrt er det at oprense CO2? Denne artikel giver indsigt i nogle af udfordringerne ved at implementere en global CO2 infrastruktur. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs

Der er brug for lange måleserier af miljøparametre

AktueltArtikler fra Dansk KemiKlima og miljø26. 05. 2025

Kontinuerlige, kvalitetssikrede målinger af kemiske, fysiske og biologiske miljøparametre giver uundværlig information. Det gælder også for Grønland. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen

Chemical ionization mass spectrometry in atmospheric studies

AktueltAnalytisk kemiArtikler fra Dansk Kemi19. 05. 2025

Advances in chemical ionization mass spectrometry can improve our understanding of atmospheric composition. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Varun Kumar, Institut for

Gamle processer, nye muligheder: Nyt kemisk-biologisk koncept til CO2-fangst og omdannelse

AktueltArtikler fra Dansk KemiBioteknologi14. 05. 2025

Oldgamle CO2-ædende mikroorganismer kan fange CO2 direkte fra skorstensrøg og omdanne kulstoffet til grønne molekyler. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Mads Ujarak Sieborg1 og

Centrotherm clean solutions bliver til Pfeiffer Vacuum+Fab Solutions

AktueltBranchenyt14. 05. 2025

Busch Group annoncerer, at deres brand centrotherm clean solutions bliver en del af Pfeiffer Vacuum+Fab Solutions. Fra september 2025 vil gasreduktionssystemerne til Semicon-industrien, som tidligere blev tilbudt under dette mærke, blive integreret i Pfeiffer-porteføljen og fremover være

I dag får professor Per Halkjær Nielsen Videnskabernes Selskabs Guldmedalje

Branchenyt14. 05. 2025

For blot fjerde gang i dette årtusinde uddeles Videnskabernes Selskabs Guldmedalje. Det sker i dag, hvor bakterieforsker Per Halkjær Nielsen, professor ved Institut for Kemi og Biovidenskab ved Aalborg Universitet, får den fine hæder for sit livsværk og sin holdånd. Han er manden, der kortlægger

Atmosfærisk transport af PFAS til Højarktis

AktueltArtikler fra Dansk KemiKlima og miljø28. 04. 2025

Tilstedeværelsen af PFAS-forbindelser skyldes ikke kun lokale kilder, men de kan langtransporteres i luften til selv meget fjerntliggende arktiske egne. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen

Biotek-firma bag fedme-medicin på tabletform har lagt en klar plan om samarbejde eller opkøb

AktueltMedicinalkemi21. 04. 2025

I dag er det frem med nålen, hvis man er i behandling med diverse former for fedme-medicin. Det hæmmer imidlertid udbredelsen på specielt asiatiske og afrikanske markeder, hvor der er en udtalt nålefobi. Derfor arbejder det danskstiftede biotekselskab Pila Pharma med at få udvikle deres

Dansk virksomhed vil vende produktionen af ammoniak på hovedet – ned i en lille container

AktueltBioteknologiFødevarekemi07. 04. 2025

NitroVolt, en dansk biotech-virksomhed, vil vende produktionen af ammoniak på hovedet. I stedet for den velkendte løsning, der bygger på den energitunge Haber-Bosch-proces, vil produktionen nu foregå i en container, der fx kan stå direkte ude hos en landmand. Ammoniak til kunstgødning er en slags

Tilmeld Nyhedsbrev

Tilmeld dig til dit online branchemagasin/avis





Få fuld adgang til indlægning af egne pressemeddelelser...
Læs mere her

/Nyheder

  • Dansk Laborant-Forening/HK

    En fundamental del af forskningen

  • DENIOS ApS

    Lær at håndtere lækager på 90 min.

  • Busch Vakuumteknik A/S

    Mød Busch på Spildevand Teknisk Forenings Årsmøde 2025

  • Dansk Laborant-Forening/HK

    Styrk laboratoriets digitale kompetencer med Python

  • DENIOS ApS

    Sådan vælger du det rigtige opbevaringsskab til farlige stoffer

  • MD Scientific

    Mød MD Scientific på ESOC 2025

  • Busch Vakuumteknik A/S

    Busch Group præsenterer innovative vakuumløsninger på Battery Show Europe 2025 i Stuttgart

  • DENIOS ApS

    Sådan transporterer du lithiumbatterier sikkert

  • Kem-En-Tec Nordic

    Opnå rent DNA/RNA på få minutter og på bæredygtig vis!

  • Kem-En-Tec Nordic

    Sikker gelfarvning på kun 15 minutter?

Vis alle nyheder fra vores FOKUSpartnere ›

Seneste Nyheder

  • Trinatriumhexafluo… hvad for noget?

    09.06.2025

  • Prisen på grisen: Hvad koster oprensning af beskidt CO2?

    02.06.2025

  • Der er brug for lange måleserier af miljøparametre

    26.05.2025

  • Chemical ionization mass spectrometry in atmospheric studies

    19.05.2025

  • Gamle processer, nye muligheder: Nyt kemisk-biologisk koncept til CO2-fangst og omdannelse

    14.05.2025

  • Centrotherm clean solutions bliver til Pfeiffer Vacuum+Fab Solutions

    14.05.2025

  • I dag får professor Per Halkjær Nielsen Videnskabernes Selskabs Guldmedalje

    14.05.2025

  • Atmosfærisk transport af PFAS til Højarktis

    28.04.2025

  • Biotek-firma bag fedme-medicin på tabletform har lagt en klar plan om samarbejde eller opkøb

    21.04.2025

  • Dansk virksomhed vil vende produktionen af ammoniak på hovedet – ned i en lille container

    07.04.2025

  • En EU-historie om nomenklatur – og ginseng til hunde, katte og heste!

    01.04.2025

  • Tysk elektrolyseanlæg er som det første i verden blevet integreret direkte i kemisk produktion

    31.03.2025

  • Dansk innovation blander sig i toppen over lande med de fleste patentansøgninger

    31.03.2025

  • Ny grundbog tager studerende på videregående uddannelser ind i den basale kemi

    26.03.2025

  • Nedrivningsarbejdere i kontakt med PCB slipper med skrækken – kun lave niveauer i blodet

    25.03.2025

Alle nyheder ›

Læs Dansk Kemi online

Annoncering i Dansk Kemi

KONTAKT

TechMedia A/S
Naverland 35
DK - 2600 Glostrup
www.techmedia.dk
Telefon: +45 43 24 26 28
E-mail: info@techmedia.dk
Privatlivspolitik
Cookiepolitik