• Facebook
  • LinkedIn
  • KONTAKT
  • ANNONCERING
  • OM KEMIFOKUS
  • PARTNERLOGIN

KemiFOKUS

Fokus på kemi

  • Analytisk kemi
  • Arbejdsmiljø/Indeklima
  • Biokemi
  • Biologi
  • Bioteknologi
  • Branchenyt
  • Energi
  • Fødevarekemi
  • Historisk kemi
  • Kemiteknik
  • Kemometri
  • Klikkemi
  • Klima og miljø
  • Lovgivning og patenter
  • Medicinalkemi
  • Nanoteknologi
  • Organisk kemi
  • Artikler fra Dansk Kemi

Artikler fra Dansk KemiNanoteknologi03. 10. 2023 | Heidi Thode

Molekylærbiologi og nanoteknologi

Artikler fra Dansk KemiNanoteknologi03. 10. 2023 By Heidi Thode

Metal-DNA-nanoteknologi baner vejen for nye produkter inden for biomedicin, biosensorer og diagnostik.

Artiklen har været bragt i Dansk Kemi nr. 5, 2023 og kan læses uden illustrationer, strukturer og ligninger herunder.

Læs originalartiklen her

Af Pratik Shah1, Peter W. Thulstrup2 og Morten J. Bjerrum2
1 Institut for Naturvidenskab og Miljø, Roskilde Universitetscenter
2 Kemisk Institut, Københavns Universitet

DNA-komplekser af ædelmetaller repræsenterer en type unikke forbindelser med en lang række fascinerende og interessante egenskaber. Metalholdige DNA-forbindelser kan anvendes inden for biologiske målemetoder (biosensorer, billeddannelse, diagnostik) samt til udvikling af innovativ medicin og målrettet lægemiddeloptagelse.

Et tværfagligt kig på DNA’s rolle og potentiale
Nukleinsyrer (DNA og RNA, se faktaboks) er fascinerende molekyler for både biologer, kemikere og fysikere. For biologer er DNA og RNA essentielle kernekomponenter og livets kode som bærere af genetisk information på tværs af generationer. For kemikere er DNA og RNA spændende makromolekyler, der via kemisk syntese kan udstyres med nye egenskaber. For fysikere er DNA en byggesten til at designe nye materialer, der kan samle sig selv til komplekse geometriske strukturer på nanoskala, hvilket tiltrækker yderligere interesse fra områder inden for materiale- og ingeniørvidenskab. DNA-nanoteknologi er således opstået på en tværfaglig platform, der integrerer viden, ideer og visioner fra flere discipliner for at udvikle nye DNA-baserede nanomaterialer (figur 1). DNA er blandt andet interessant på grund af den forudsigelige måde, hvorpå DNA opfører sig, hvilket er centralt for dets biologiske rolle og dets replikation. I de senere år er det imidlertid erkendt, at den naturlige DNA-kemi er langt mere varieret end først antaget, hvilket vi vender tilbage til senere i artiklen.

Alternativ DNA-kemi:
Metalioners unikke samspil med nukleinsyrer

Gennem årene har kemikere udforsket mange forskellige alternativer til den naturligt forekommende DNA-kemi. Den kemiske struktur af DNA er ideel til metalbinding via fosfatgrupperne i DNA-molekylets rygrad og via de heteroaromatiske nukleobaser. Når DNA tages ud af det biologiske miljø og ned i reagensglasset, udvides mulighederne for at udnytte samspillet mellem DNA og metalioner drastisk. Metalioner interagerer fundamentalt med nukleinsyrer på én af ​​tre måder. For det første danner metalioner såsom magnesium, natrium og kalium elektrostatiske interaktioner med fosfatgrupperne. For det andet interagerer en række overgangsmetalioner, herunder også en række lanthanider, med både fosfat og baser. For det tredje interagerer blandt andet metalioner af Ag, Au og Cu med nitrogenholdige baser, hvor de i det væsentlige kan erstatte hydrogenbinding med metalmedieret baseparring.
I laboratoriet kan DNA via selvansamling antage bestemte 3-dimensionelle strukturer via valg af sekvenskomplementaritet og kemiske additiver. Interaktioner mellem DNA og metalioner åbner nye muligheder for at bruge DNA til at danne nanomaterialer med en kontrolleret morfologi og unikke egenskaber. DNA-strukturer kan også udnyttes til at fungere som skabelon til at organisere metalliske nanomaterialer, nemlig de såkaldte metal-nanoclusters. Metal-nanoclusters (dansk: nanoklynger) er mindre end 2 nm i størrelse og er en særlig gruppe af nanopartikler, idet disse nanoclusters for et givent metal består af en blanding af positive metalioner og neutrale metalatomer. Mange ædle grundstoffer såsom Cu, Au og Ag har vist sig at danne nanoclusters med attraktive optiske egenskaber. Sølv nanoclusters (AgNC) har fået særlig opmærksomhed på grund af deres stærke og justerbare fluorescens, fotostabiliteten og den store forskydning mellem exitations- og emissionsbølgelængden (figur 2). Man kan betragte et DNA-kompleks af et AgNC som et multi-atom fluorescerende nanomateriale.

DNA-indkapslede fluorescerende sølv nanoclusters
De attraktive egenskaber ved AgNC’er blev først undersøgt i gasfase [1], men blev bragt tættere på bioteknologiske og biomedicinske anvendelser af en vigtig opdagelse i 2004. Her viste Petty et.al., at DNA kan bruges som skabelon til syntese af fluorescerende AgNC’er i en vandig opløsning [2]. Brugen af ​​biokompatibelt DNA som skabelon og syntese under fysiologisk relevante forhold åbnede nye muligheder for praktiske biomedicinske anvendelser af DNA-indkapslede fluorescerende sølv nanoclusters (DNA/AgNC’er). Sølvioner foretrækker at binde til N3 fra cytosiner samt N7 og O6 i guaninbaser. Cytosinrige DNA’er er nogle af de mest brugte skabeloner til binding af Ag0/Ag+. Der har således inden for de sidste 10 år været en eksplosion i antallet af DNA-sekvenser, der har vist sig at indkapsle fluorescerende AgNCs rettet mod anvendelse af ​​DNA/AgNCs fluorescens i biosensorer, billeddannelse og i diagnostik.
I starten betragtedes DNA som en rigid skabelon, der fungerer som et passivt templat bindingssted for den fluorescerende Ag0/Ag+ nanoclusterstruktur. Nye undersøgelser har imidlertid godtgjort, at DNA også er en aktiv del af systemet, så DNA-sekvensen og strukturen kan bruges til at modulere fluorescensen af ​​AgNC’er. Vi viste således allerede i 2012 [3], at den sekundære struktur af DNA kan spille en vigtig rolle i syntesen af ​​fluorescerende AgNC’er. I 2018 viste vi endvidere [4], at den tertiære struktur af DNA også kan spille en vigtig rolle i at modulere de fluorescerende egenskaber af AgNC’er. I dette system gav den syntetiske AgNCs anledning til en dimerstruktur af DNA med orange fluorescens, mens AgNC’er i den monomere DNA-hårnålestruktur udsendte rød fluorescens.

DNA-dimerisering via interagerende hårnåle
Vores første antagelse var, at den orange AgNC dimerstruktur var en dimer dannet via Watson-Crick-baseparring af dobbeltstrenget DNA, hvor AgNC’er er bundet til cytosiner i den dobbeltstrengede DNA-struktur. Denne antagelse blev tilsyneladende understøttet af den første rapporterede krystalstruktur af grøn-emissive AgNC’er. Vores fortsatte studier af den dimere DNA-struktur viste dog utvetydigt til vores overraskelse, at den dimeriserede DNA-struktur involverede metal-medierede basepar-interaktioner mellem to DNA-molekyler. De orange fluorescerende AgNC’er forbinder DNA via non-konventionel baseparring, der involverer Cytosin-Ag-Ag-Cytosin-binding. Flere komplementære tilgange viste endegyldigt, at den baseparring, der identificeres her, er unik og involverer basepar-metal og metal-metal-interaktioner, ligesom dette fremgår af den første krystalstruktur af et nærinfrarødt fluorescerende DNA-AgNC kompleks [5].
Vi betragter vores observation af sammenkædning af ​​to DNA-hårnåle som en meget vigtig fundametal egenskab ved AgNC’er (figur 3). Denne vekselvirkning repræsenterer en ny type bindingsinteraktion mellem naturligt genetisk materiale, der er fuldstændig styret af det syntetiske nanomateriale, og som ikke kan findes i naturen. Forståelsen af de kræfter, der driver vekselvirkningen, kræver nærmere undersøgelser, så man på sigt kan forudsige og modulere fluorescensen af DNA-​​AgNC systemer.

Hoogsteen baseparring som alternativ templat
Efter at have påvist betydningen af ​​den sekundære struktur for DNA i forhold til de fluorescerende egenskaber af AgNC’erne, undersøgte vi, om DNA kan forsyne de indkapslede AgNC’er med nye egenskaber ved at erstatte hårnåle-DNA-strukturen med den mindre kendte triplex-DNA-struktur (figur 4).
I de seneste år har Hoogsteen baseparret triplex-DNA-struktur fået meget opmærksomhed på grund af dets potentiale i oligo-baserede terapeutika, der kan hæmme molekylære processer som transkription, translation og protein-DNA-interaktion. Et andet vigtigt aspekt af triplex-DNA er evnen til reversibelt at ændre dets struktur som reaktion på pH. Hoogsteen basepar destabiliseres ved basisk pH, mens det kan gendanne strukturen ved sur pH. Ved at erstatte hårnåle-DNA-struktur med Hoogsteen-baseparret triplex-DNA-struktur fandt vi ud af, at fluorescerende AgNC’er blev dynamisk pH-responsive [6]. Dette var et interessant casestudie, som viste, at et DNA-biomolekyle kan regulere egenskaberne af ​​et nanomateriale. DNA-molekylet vil ”fornemme” ændringerne i pH og vil reversibelt ændre konformation som reaktion på pH, hvilket vil ændre den fluorescerende egenskab af AgNC’er. Dette gjorde det muligt for os at udvikle en pH-følsom DNA-AgNC, der potentielt kan vise pH-variationer i cellulære eller subcellulære miljøer, og dermed give indsigt i pH-afhængige processer og interaktioner via ændret AgNC emission.
Desuden forventer vi, at vores resultater inspirerer til udvikling af pH-responsive DNA-systemer, der selektivt kan frigive associerede molekyler, såsom lægemidler eller kontraststoffer, via reaktion på specifikke pH-betingelser med henblik på målrettet levering og forbedret terapeutisk effektivitet. Som et kuriosum mener vi, det er bemærkelsesværdigt, at vi har udviklet et DNA-baseret nanomateriale, der involverer tre forskellige typer af baseparringssystemer i en enkelt samling: Watson-Crick hydrogenbaseparring, Hoogsteen baseparring og syntetisk metal nanocluster-medieret baseparring [6].

Nye muligheder med RNA
Inden for det sidste årti har man identificeret en række RNA-molekyler i cellerne, som er med til at styre cellernes funktion på måder, man ikke var klar over tidligere. Disse RNA-typer kan ofte fungere som indikatorer for specielle tilstande, blandt andet i forbindelse med sygdom. Variationer i niveauerne af bestemte såkaldte mikroRNA-biomarkører (miRNA) er blevet identificeret i flere sygdomme som cancer, diabetes, neurodegenerative og hjerte-kar-sygdomme. Imidlertid er fraværet af egnede metoder til påvisning af miRNA’er et af de begrænsende trin, der forhindrer brugen af ​​miRNA’er som biomarkører til diagnose i klinisk sammenhæng. Ved at bruge den fluorescerende egenskab af DNA/AgNC’er har vi undersøgt mulighederne for at udvikle nye biosensorer rettet mod miRNA’er til tidlig sygdomsdiagnostik ved for eksempel cancer (figur 5). Vi har således demonstreret en hurtig, enkel, billig og effektiv brug af DNA/AgNC’er til effektiv måling af mikroRNA-biomarkører [7]. Vi forudser, at der kommer reelle medicinske og diagnostiske gennembrud på forskellige områder via denne teknologi.
Anvendelserne af metal-DNA-nanoteknologi er enorme, og kan også komme til at omfatte områder såsom avanceret nanoelektronik og miljøovervågning, og vi ser frem til en spændende fremtid for disse ekstraordinære hybridstrukturer.

E-mail:
Morten J. Bjerrum: mobj@chem.ku.dk
Peter W. Thulstrup: pwt@chem.ku.dk
Pratik Shah: shah@ruc.dk

Referencer
1. Felix, C., et al., Ag8 fluorescence in argon. Phys Rev Lett 86, 2001, 2992-5.
2. Petty, J.T., et al., DNA-templated Ag nanocluster formation. Journal of the American Chemical Society 126, 2004, 5207-12.
3. Shah, P., et al., Design aspects of bright red emissive silver nanoclusters/DNA probes for microRNA detection. ACS Nano 6, 2012, 8803-14.
4. Shah, P., et al., The structural shift of a DNA template between a hairpin and a dimer tunes the emission color of DNA-templated AgNCs. Nanoscale 10, 2018, 20717-22.
5. Cerretani, C., et al., Crystal structure of a NIR-Emitting DNA-Stabilized Ag(16) Nanocluster. Angew Chem Int Ed Engl 58, 2019, 17153-57.
6. Nagda, R., et al., Silver Nanoclusters Serve as Fluorescent Rivets Linking Hoogsteen Triplex DNA and DNA Structures. ACS Nano 16, 2022, 13211-22.
7. Shah, P., et al., Locking-to-unlocking system is an efficient strategy to design DNA/silver nanoclusters (AgNCs) probe for human miRNAs. Nucleic Acids Res 44, 2016, e57.

FAKTABOKS:
DNA er bygget op af nukleotider. Hvert nukleotid består af en nitrogenholdig nukleobase, enten cytosin (C), guanin (G), adenin (A) eller thymin (T), såvel som en sukker kaldet deoxyribose og en fosfatgruppe. Nukleotiderne forbindes med hinanden i en kæde af kovalente bindinger mellem deoxyribose fra det ene nukleotid og fosfat fra det andet, hvilket resulterer i en alternerende deoxyribose-fosfat-rygrad. Mest kendt er den klassiske struktur afdækket af Francis Crick, Rosalind Franklin, James Watson og Maurice Wilkins. Dette er en såkaldt B-form, dobbeltspiralformet struktur sammensat af to antiparallelle DNA-strenge, der holdes sammen af Watson-Crick-basepar, hvorved fire nitrogenholdige baser interagerer via hydrogenbindinger på en specifik måde, nemlig Adenin-parring med Thymin og Guanin-parring med, Cytosin. Ribonukleinsyre (RNA) består ligesom DNA af kæder af nukleotider, men i RNA indgår ribose i de kovalente bindinger og nukleobasen thymin er erstattet med uracil (U).

Skrevet i: Artikler fra Dansk Kemi, Nanoteknologi

Seneste nyt fra redaktionen

Chemical ionization mass spectrometry in atmospheric studies

Analytisk kemiArtikler fra Dansk KemiTop19. 05. 2025

Advances in chemical ionization mass spectrometry can improve our understanding of atmospheric composition. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Varun Kumar, Institut for

Gamle processer, nye muligheder: Nyt kemisk-biologisk koncept til CO2-fangst og omdannelse

AktueltArtikler fra Dansk KemiBioteknologi14. 05. 2025

Oldgamle CO2-ædende mikroorganismer kan fange CO2 direkte fra skorstensrøg og omdanne kulstoffet til grønne molekyler. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Mads Ujarak Sieborg1 og

Centrotherm clean solutions bliver til Pfeiffer Vacuum+Fab Solutions

AktueltBranchenyt14. 05. 2025

Busch Group annoncerer, at deres brand centrotherm clean solutions bliver en del af Pfeiffer Vacuum+Fab Solutions. Fra september 2025 vil gasreduktionssystemerne til Semicon-industrien, som tidligere blev tilbudt under dette mærke, blive integreret i Pfeiffer-porteføljen og fremover være

I dag får professor Per Halkjær Nielsen Videnskabernes Selskabs Guldmedalje

Branchenyt14. 05. 2025

For blot fjerde gang i dette årtusinde uddeles Videnskabernes Selskabs Guldmedalje. Det sker i dag, hvor bakterieforsker Per Halkjær Nielsen, professor ved Institut for Kemi og Biovidenskab ved Aalborg Universitet, får den fine hæder for sit livsværk og sin holdånd. Han er manden, der kortlægger

Atmosfærisk transport af PFAS til Højarktis

AktueltArtikler fra Dansk KemiKlima og miljø28. 04. 2025

Tilstedeværelsen af PFAS-forbindelser skyldes ikke kun lokale kilder, men de kan langtransporteres i luften til selv meget fjerntliggende arktiske egne. Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen

Biotek-firma bag fedme-medicin på tabletform har lagt en klar plan om samarbejde eller opkøb

AktueltMedicinalkemi21. 04. 2025

I dag er det frem med nålen, hvis man er i behandling med diverse former for fedme-medicin. Det hæmmer imidlertid udbredelsen på specielt asiatiske og afrikanske markeder, hvor der er en udtalt nålefobi. Derfor arbejder det danskstiftede biotekselskab Pila Pharma med at få udvikle deres

Dansk virksomhed vil vende produktionen af ammoniak på hovedet – ned i en lille container

AktueltBioteknologiFødevarekemi07. 04. 2025

NitroVolt, en dansk biotech-virksomhed, vil vende produktionen af ammoniak på hovedet. I stedet for den velkendte løsning, der bygger på den energitunge Haber-Bosch-proces, vil produktionen nu foregå i en container, der fx kan stå direkte ude hos en landmand. Ammoniak til kunstgødning er en slags

En EU-historie om nomenklatur – og ginseng til hunde, katte og heste!

AktueltArtikler fra Dansk KemiHistorisk kemi01. 04. 2025

Artiklen har været bragt i Dansk Kemi nr. 6, 2024 og kan læses uden illustrationer, strukturer og ligninger herunder. Læs originalartiklen her Nomenklaturudvalget får indimellem henvendelser om dansk kemisk nomenklatur fra de oversættere i EU, hvis opgave det er at oversætte EU-lovgivning på

Tysk elektrolyseanlæg er som det første i verden blevet integreret direkte i kemisk produktion

AktueltEnergi31. 03. 2025

Efter en byggeperiode på omkring to år, er BASF nye 54 megawatt elektrolyseanlæg blevet indviet. Udover at være Tyskland største, med en kapacitet til at producere op til 8.000 ton grøn brint årligt, skriver det også historie på et andet område. Brinten skal primært anvendes som råmateriale i

Dansk innovation blander sig i toppen over lande med de fleste patentansøgninger

AktueltBranchenyt31. 03. 2025

Danske virksomheder er fortsat nogle af de mest aktive i Europa til at innovere. Det viser nye tal fra Den Europæiske Patentmyndighed, EPO, som udsteder patenter, der kan dække i op til 45 lande. Vestas, Novozymes og Danmarks Tekniske Universitet har leveret de største bidrag til, at Danmark kan

Tilmeld Nyhedsbrev

Tilmeld dig til dit online branchemagasin/avis





Få fuld adgang til indlægning af egne pressemeddelelser...
Læs mere her

/Nyheder

  • Kem-En-Tec Nordic

    Opnå rent DNA/RNA på få minutter og på bæredygtig vis!

  • Kem-En-Tec Nordic

    Sikker gelfarvning på kun 15 minutter?

  • DENIOS ApS

    Her er den oversete vej til et sundere arbejdsmiljø

  • Busch Vakuumteknik A/S

    Pfeiffer Vacuum+Fab Solutions lancerer den nye HiCube Neo RGA

  • Busch Vakuumteknik A/S

    centrotherm clean solutions bliver til Pfeiffer Vacuum+Fab Solutions

  • DENIOS ApS

    Ved du, hvornår det er tid til at vedligeholde, udskifte eller flytte dit opsamlingskar?

  • DENIOS ApS

    3 sikkerhedsfunktioner, du skal kigge efter på dit opsamlingskar

  • Holm & Halby

    VidensDage 2025: To dage i videnskabens og fremtidens tegn

  • Holm & Halby

    Holm & Halby deltager i Europe Biobank Week 2025

  • LABDAYS – Fagmesse for Laboratorieteknik

    LabDays – Almost sold out

Vis alle nyheder fra vores FOKUSpartnere ›

Seneste Nyheder

  • Chemical ionization mass spectrometry in atmospheric studies

    19.05.2025

  • Gamle processer, nye muligheder: Nyt kemisk-biologisk koncept til CO2-fangst og omdannelse

    14.05.2025

  • Centrotherm clean solutions bliver til Pfeiffer Vacuum+Fab Solutions

    14.05.2025

  • I dag får professor Per Halkjær Nielsen Videnskabernes Selskabs Guldmedalje

    14.05.2025

  • Atmosfærisk transport af PFAS til Højarktis

    28.04.2025

  • Biotek-firma bag fedme-medicin på tabletform har lagt en klar plan om samarbejde eller opkøb

    21.04.2025

  • Dansk virksomhed vil vende produktionen af ammoniak på hovedet – ned i en lille container

    07.04.2025

  • En EU-historie om nomenklatur – og ginseng til hunde, katte og heste!

    01.04.2025

  • Tysk elektrolyseanlæg er som det første i verden blevet integreret direkte i kemisk produktion

    31.03.2025

  • Dansk innovation blander sig i toppen over lande med de fleste patentansøgninger

    31.03.2025

  • Ny grundbog tager studerende på videregående uddannelser ind i den basale kemi

    26.03.2025

  • Nedrivningsarbejdere i kontakt med PCB slipper med skrækken – kun lave niveauer i blodet

    25.03.2025

  • Styrkelse af nyfundet gen kan gøre kartoflen resistent over for svampeangreb

    24.03.2025

  • Fra forskning i nanosikkerhed til mere sikker håndtering af nanomaterialer i det danske arbejdsmiljø

    21.03.2025

  • Dansk forbud mod PFAS er lige på trapperne – indsigelsesfrist mod 2024-aftale er overskredet

    20.03.2025

Alle nyheder ›

Læs Dansk Kemi online

Annoncering i Dansk Kemi

KONTAKT

TechMedia A/S
Naverland 35
DK - 2600 Glostrup
www.techmedia.dk
Telefon: +45 43 24 26 28
E-mail: info@techmedia.dk
Privatlivspolitik
Cookiepolitik