• Facebook
  • LinkedIn
  • KONTAKT
  • ANNONCERING
  • OM KEMIFOKUS
  • PARTNERLOGIN

KemiFOKUS

Fokus på kemi

  • Analytisk kemi
  • Arbejdsmiljø/Indeklima
  • Biokemi
  • Biologi
  • Bioteknologi
  • Branchenyt
  • Energi
  • Fødevarekemi
  • Historisk kemi
  • Kemiteknik
  • Kemometri
  • Klikkemi
  • Klima og miljø
  • Lovgivning og patenter
  • Medicinalkemi
  • Nanoteknologi
  • Organisk kemi
  • Artikler fra Dansk Kemi

Historisk kemi01. 11. 2019 | Katrine Meyn

Artikel 8: Periodesystemets næste 150 år

Historisk kemi01. 11. 2019 By Katrine Meyn

I anledning af at det periodiske system i år fylder 150 år, bringer vi en artikelserie forfattet af Jesper Bendix. Artikelserien illustrerer periodesystemets aktualitet som redskab i systematiseringen af kemien.

Læs originalartiklen her

Artiklen har været bragt i Dansk Kemi nr. 8, 2019 og kan læses uden illustrationer, strukturer og ligninger herunder.

Spådomskunst fører sjældent det store med sig og overskriften er nok den sikreste vej til fremtidige kemikeres overbærende hovedrysten. Alligevel vil det være naturligt at afrunde causerierne omkring periodesystemet med nogle forsøg på at være lidt fremadskuende.
Hvis man i anledning af den tilstundende juletid tænker over, hvordan man skal definere en vaniljekrans, så kommer man ikke uden om at nævne hullet i midten, selvom det hverken er særligt velsmagende eller nødvendigt, men ofte er det simplest at definere noget ud fra dets grænser eller det, der mangler. Det har været gjort i de forudgående klummer ved at angive grænser for oxidationstrin, størrelser, koordinationstal, elektronegativiteter, etc., men i det store hele har diskussionerne begrænset sig til eksisterende kemiske forbindelser. En anden vinkel på kemien er at overveje “hullet i midten”, altså hvilke forbindelser der mangler, og hvorfor de (endnu) ikke er fremstillet. Et klassisk eksempel på denne tilgang er Dasents bog ”Non-existent compounds” med undertitlen ”Compounds of low stability” fra 1965 [1]. Et af de klassiske eksempler, som Dasent fremhæver, er den usystematisk lave stabilitet af de høje oxidationstrin i grupperne 13-17 for den første lange periode. Det er ganske tydeligt for arsen, hvor AsCl5 kun er stabil ved lave temperaturer (<-50°C) mens både PCl5 og SbCl5 er stabile forbindelser med en lang historie. I gruppe 16 er SeO3 (og H2SeO4) tilsvarende et stærkt oxidationsmiddel, mens dette ikke er tilfældet for hverken SO3 eller TeO3 [2]. Som ærkeeksemplet på denne anormalitet optræder i Dasents bog den ”ikke-eksisterende” ion perbromat (BrO4−), som flankeres af de velkendte perchlorat (ClO4−) og meta-periodat (IO4−) ioner. Nu ville skæbnen, eller rettere de nævenyttige kolleger, det ikke bedre, end at perbromat blev fremstillet og karakteriseret kun tre år efter ”Non-existent Compounds” udkom [3].
Dette ændrer ikke på den generelle lave stabilitet af de højeste oxidationstrin i denne periode, som kan forstås ud fra en høj effektiv kerneladning på grund af en ineffektiv skærmning fra de fyldte d-orbitaler, der optræder første gang i denne periode. Men syntesen af perbromationen illustrerer, hvordan hvide pletter på de kemiske forbindelsers landkort naturligt tiltrækker sig en lignende opmærksomhed og aktivitet, som de ikke-udfyldte pladser i de tidlige periodesystemer. En af de mere effektive syntese-veje, om end ikke den første, til perbromat er i øvrigt oxidation af bromat (BrO3-) med xenondifluorid, se figur 1. Her var Dasent lidt heldigere med timingen, da der var gået hul på ædelgaskemien med Bartletts reaktion mellem PtF6 og xenon tre år før bogudgivelsen, altså i 1962 [4]. Produktet af denne reaktion blev indledningsvist (baseret på overraskende dårlig karakterisering) formuleret som Xe+[PtF6−] i analogi med det kendte salt af dioxogenylionen, O2+ [PtF6−]. I kapitlet om ædelgasforbindelser blev der redegjort for, hvordan xenon(I)-ionen teoretisk kan danne termodynamisk stabile iongitre med mange andre mulige modioner, for eksempel BF4− og SiF62− [5].

Alle disse forudsigelser viste sig at være lige så ukorrekte som den oprindelige formulering af Bartlett synteseprodukt. Der findes ingen Xe(I) forbindelser. Den forbindelse, som Bartlett fremstillede, var [XeF+][PtF6−], altså en xenon(II)-forbindelse [6]. Her er det værd at notere sig, at de beregninger, der understøttede eksistensen af xenon(I)saltet og muligheden for at fremstille andre salte af denne ion, ikke var fundamentalt forkerte. Isoleret set er xenon(I)-forbindelsen sandsynligvis stabil, men der blev ikke taget højde for, at molekyler og ioner ikke er isolerede, når vi normalt taler om kemiske forbindelser. De kan reagere med sig selv og give anledning til for eksempel disproportioneringsreaktioner. I det konkrete tilfælde 2XeI  Xe0 + XeII. På helt analog vis er MgI en sjældenhed, fordi disproportioneringsreaktionen til frit magnesium og magnesium(II) er energimæssigt favorabel og, i næsten alle tilfælde, en hurtigt fortløbende reaktion [7].
Men en af de forudsigelser, som man godt kan vove på nuværende tidspunkt, er, at disse bekvemme regler om, at pariteten på oxidationstrinnene følger pariteten på gruppenumrene i hovedgrupperne (Gr1,2 og 13-18) vil blive eroderet i de kommende år. Grunden er, at de eksperimentelle teknikker bliver stadigt mere forfinede. Der udføres i dag enkelt-molekyl karakteriseringer både med hensyn til ledningsevne og magnetiske egenskaber, men især er enkelt-molekyl (fluorescens-)spektroskopi blevet en udbredt teknik. Når kemiske forbindelser således bliver eksperimentelt studeret eet molekyle ad gangen, så bliver teoretiske forudsigelser meget lettere, da man undgår nogle af de komplicerende egenskaber og reaktiviteter ved makroskopiske materialer. Derfor vil vi fremover få udvidet bestanden af kemiske forbindelser på bekostning af lidt af systematikken i periodesystemet.
En anden måde at studere kemiske forbindelser som isolerede molekyler uden at skulle opnå en følsomhed, der svarer til at måle på et enkelt molekyle, er at anvende såkaldte matrix-isoleringsteknikker, hvor kemien foretages fortyndet i en fast ureaktiv matrix, typisk af frossen argon. På den måde er det lykkedes at fremstille HgF4 og karakterisere forbindelsen ved hjælp af infrarød spektroskopi ved -269 K [8]. Beregninger understøtter eksistensen af det individuelle molekyle og viser, at der er d-orbitaler på kviksølv involveret i bindingerne til fluor, hvilket gør kviksølv til et ægte overgangsmetal. Der er nok heller ingen tvivl om, at de næste generationer af kemikere med denne type af teknikker vil udfordre grænserne mellem de forskellige blokke i periodesystemet (jf. klumme nr. 7 i denne serie).
Flere af de egenskaber, der udviser systematisk variation i periodesystemet og som har været behandlet i tidligere klummer, for eksempel størrelser og elektronegativiteter, er afhængige af det ydre tryk. Vi er så vant til kemi ved atmosfæretryk, at de færreste overvejer, at kemien ved meget høje tryk, eksempelvis i det indre af planeter og stjerner, kan være fuldstændigt forskellig fra den, vi kender, fordi variationerne i periodesystemet bliver helt forskellige ved meget høje tryk. I takt med ønsket om at forstå dannelse og sammensætning af planeter (sml. årets Nobelpris i fysik til opdagelsen af exoplaneter), vil der komme fokus på kemi under ekstreme betingelser. Et af de nylige, meget spektakulære resultater, som højtrykskemien har leveret, er den overraskende 2015-rekord i kritisk temperatur for superledning på ca. 203 K, figur 2 [9]. Af alle forbindelser var det den molekylære forbindelse hydrogensulfid H2S, der overraskende nok leverede den datidige rekord, ganske vist ved tryk (over 155 GPa eller ca. 1.5 Matm).

Et andet overraskende fund er den første heliumforbindelse, Na2He, som har antifluorit struktur. Forbindelsen er stabil ved tryk på over 113 GPa [10]. At der også sker alvorlige ting med vores almindelige syn på periodesystemet, illustreres af variationen af elektronegativiteter: Ved det moderate tryk på 300 GPa [11] er scandium blevet det mest elektropositive grundstof, mens alkalimetallerne er gået hen og blevet en blød mellemvare [12]. De er alle væsentligt mindre elektropositive end calcium og lidt mindre elektropositive end jern! Samtidigt er sølv mere ædelt end guld ved så høje tryk. Blandt lanthanoiderne, der er meget ens ved normalt tryk, er variationen ved 300 GPa større end forskellen mellem natrium og chlor. Den eneste trøst er, at fluor beholder tronen som det mest elektronegative grundstof. Ved disse meget høje tryk sker der også drastiske ting med bindingstyperne. Der er mange molekylære forbindelser, der ophører med at eksistere ved meget høje tryk: Hydrogen bliver metallisk, nitrogen polymeriserer og CO2 får en kvarts-lignende struktur.
Ved at betragte det ydre tryk som en parameter kan man altså på mange måder vende op og ned på de vante egenskaber af grundstofferne og deres forbindelser. Hvad så med nye grundstoffer? Hvor mange vil blive tilføjet i de næste generationer, og vil de bringe fundamentalt ny kemi med sig? Her er det nok vanskeligt som skribent helt at skjule sin konservatisme – nogle ville sige pessimisme. Med den 7. periode komplet og med halveringstider af oganesson under 1 ms, er det vanskeligt at se, hvordan detaljeret indsigt i kemien skulle kunne fremkomme. Men som nævnt ovenfor, så bliver enkelt-molekyl-karakteriseringer stedse mere almindelige, og forhåbentlig vil det være muligt fremover at studere de tungeste atomer spektroskopisk og få eksperimentel indsigt i deres elektroniske struktur. Her er der allerede nu teoretiske forudsigelser om, at den model vi er vant til med elektronskaller svarende til bestemte kvantetal, bryder grundigt sammen allerede ved oganesson, figur 3 [13]. For at blive ved julemetaforerne, så er elektronstrukturen af den ædle ikke-gas oganesson snarere et stykke plumcake end en vaniljekrans.

Referencer
1. W.E. Dasent. “Non-Existent Compounds” (1965), Marcel Dekker, New York.
2. C.E.Housecroft, A.G. Sharpe “Inorganic Chemistry” (5. Ed.; 2018), Pearson Education Limited.
3. E.H. Appelman, “The synthesis of perbromates” (1968), J. Am. Chem. Soc, 90, 1900.
4. N. Bartlett, “Xenon hexafluoroplatinate(V) Xe+[PtF6]−”. (1968), Proceedings of the Chemical Society. 6, 218.
5. Ref. 1, Kapitel 7.
6. L. Grahama, O. Graudejusa, N.K. Jhab, N. Bartlett, “Concerning the nature of XePtF6” (2000) Coord. Chem. Rev. 197, 321.
7. Et sjældent eksempel på en stabil magnesium(I) forbindelse er rapporteret i: Green, S. P.; Jones C.; Stasch A. (December 2007). “Stable Magnesium(I) Compounds with Mg-Mg Bonds”. Science. 318, 1754.
8. Wang, Xuefang; Andrews, Lester; Riedel, Sebastian; Kaupp, Martin (2007). “Mercury Is a Transition Metal: The First Experimental Evidence for HgF4”. Angew. Chem. Int. Ed. 46, 8371.
9. Cartlidge, Edwin “Superconductivity record sparks wave of follow-up physics”. Nature. 524, 277.
10. X. Dong. et.al. ”A stable compound of helium and sodium at high pressure” (2017), Nature Chemistry, 9, 440.
11. Selvom 300 GPa lyder af meget, så er det ikke ekstremt i forhold til de tryk, der estimeres i det indre af planeter. I Jupiters centrum anslås trykket således til 5-10 TPa.
12. M. Rahm, R. Cammi, N.W. Ashcroft, R. Hoffmann. “Squeezing All Elements in the Periodic Table: Electron Configuration and Electronegativity of the Atoms under Compression” (2019) J. Am. Chem. Soc, 141, 10253.
13. a) P.Jerabek, B. Schuetrumpf, P. Schwerdtfeger, W. Nazarewicz “Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit” arXiv: 1707.08710
b) P. Ball https://www.chemistryworld.com/news/immense-oganesson-projected-to-have-no-electron-shells/3008104.article.

Skrevet i: Historisk kemi

Seneste nyt fra redaktionen

Sulfitter. Sulfo. Sulfonater og sulfater. Sulfa. Sulfy. Sulfider. Sulfan

Artikler fra Dansk KemiHistorisk kemiTop15. 09. 2025

Artiklen har været bragt i Dansk Kemi nr. 4, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Hvad er fælles for indholdet af de to flasker på billedet? Der er svovlforbindelser i begge, og i begge giver de pågældende forbindelser lidt

Jubilæumsudgaven af Labdays i Aarhus er kommet godt fra start

BranchenytTop10. 09. 2025

Lige fra morgenstunden stod de første besøgende klar til at komme ind på LabDays messen, der i år afholdes i smilets by, Aarhus. Her kunne de finde oplagte udstillere, der gennem messens to dage står klar til at præsentere deres produkter, der inkluderer alt indenfor laboratorieverdenen. Der ud

Kvantealgoritmer og kemisk forståelse i åbne systemer

AktueltArtikler fra Dansk Kemi03. 09. 2025

Fra myten om den heroiske beregning til realistiske simuleringer af elektronoverførsel i åbne systemer med hukommelse. Artiklen har været bragt i Dansk Kemi nr. 4, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Lea K. Northcote1,2 og

Grøn kemi, affald og plast

AktueltArtikler fra Dansk KemiGrøn omstilling26. 08. 2025

Grøn kemi – læren om hvordan kemi udføres bæredygtigt og sikkert – bliver kun vigtigere. Artiklen har været bragt i Dansk Kemi nr. 4, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Christine Brænder Almstrup og Mikael Bols, Kemisk

Det gyldne mikrobiom: Tarmbakterier som kilde til det essentielle B-vitamin riboflavin

AktueltArtikler fra Dansk KemiBiokemiBioteknologiMedicinalkemi20. 08. 2025

Riboflavin er et essentielt vitamin, der spiller en nøglerolle for vores sundhed samt for at opretholde et sundt tarmmikrobiom. Artiklen har været bragt i Dansk Kemi nr. 3, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Emmelie Joe

Antibiotikaresistens i vores naturlige miljøer

AktueltArtikler fra Dansk KemiBiologi12. 08. 2025

Spredning af antibiotikaresistens kan ske via mineraloverflader. Artiklen har været bragt i Dansk Kemi nr. 3, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Karina Krarup Svenninggaard Sand, associate professor, Globe Institute,

Nye metoder giver indsigt i plantebaseret strukturdannelse

AktueltArtikler fra Dansk KemiFødevarekemi04. 08. 2025

Et afsluttet ph.d.-projekt fra Institut for Fødevarer ved Aarhus Universitet. Artiklen har været bragt i Dansk Kemi nr. 3, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Julie Frost Dahl*, Sandra Beyer Gregersen og Milena Corredig,

Hofmeister – nem at anvende, svær at forstå

AktueltArtikler fra Dansk KemiFødevarekemi23. 06. 2025

Franz Hofmeister opløste æggehvide i vandige saltopløsninger. En artikel fra 1888 beskriver, hvordan nogle ioner får proteiner til at udfælde, mens andre ioner har den modsatte effekt. Fødevarekemien bruger stadig Hofmeister, men langt mere nuanceret. Artiklen har været bragt i Dansk Kemi nr. 3,

Udvinding af fødevareproteiner fra kløvergræs ved membranteknologi

AktueltArtikler fra Dansk KemiFødevarekemi17. 06. 2025

Hvis kløvergræs skal kunne anvendes som ny ressource til udvinding af fødevareproteiner, kan membranteknologi være vejen frem. Artiklen har været bragt i Dansk Kemi nr. 3, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) Af Mette Lübeck, Mads

Trinatriumhexafluo… hvad for noget?

AktueltArtikler fra Dansk KemiHistorisk kemi09. 06. 2025

Artiklen har været bragt i Dansk Kemi nr. 2, 2025 og kan læses uden illustrationer, strukturer eller ligninger herunder(læs originalartiklen her) I år fejrer man internt i IUPAC 20-året for offentliggørelsen af The Red Book (i det følgende blot "RB2005") med anbefalinger vedrørende

Tilmeld Nyhedsbrev

Tilmeld dig til dit online branchemagasin/avis





Få fuld adgang til indlægning af egne pressemeddelelser...
Læs mere her

/Nyheder

  • DENIOS ApS

    Sådan får du op til 50 % mere lagerkapacitet

  • Holm & Halby

    VidensDage 2025: To dage med viden, visioner og værdi

  • Holm & Halby

    LAF kabinetter: Er du rustet til den nye EN12469 / Annex 1

  • Drifton

    Mød Drifton og DACOS på LabDays 2025 i Aarhus

  • DENIOS ApS

    Hvordan håndterer du noget, du ikke kan se?

  • Mikrolab – Frisenette A/S

    Vægtbytte er blevet opdateret: Nu får du flere muligheder

  • Busch Vakuumteknik A/S

    Busch Vacuum Solutions fremviser avancerede produkter fra Pfeiffer Vacuum+Fab Solutions på LabDays

  • Dansk Laborant-Forening/HK

    LABORANTER CAND.ALT.

  • Kem-En-Tec Nordic

    Lad os fortsætte traditionen – vi ses på LabDays!

  • DENIOS ApS

    Ses vi på HI-messen?

Vis alle nyheder fra vores FOKUSpartnere ›

Seneste Nyheder

  • Sulfitter. Sulfo. Sulfonater og sulfater. Sulfa. Sulfy. Sulfider. Sulfan

    15.09.2025

  • Jubilæumsudgaven af Labdays i Aarhus er kommet godt fra start

    10.09.2025

  • Kvantealgoritmer og kemisk forståelse i åbne systemer

    03.09.2025

  • Grøn kemi, affald og plast

    26.08.2025

  • Det gyldne mikrobiom: Tarmbakterier som kilde til det essentielle B-vitamin riboflavin

    20.08.2025

  • Antibiotikaresistens i vores naturlige miljøer

    12.08.2025

  • Nye metoder giver indsigt i plantebaseret strukturdannelse

    04.08.2025

  • Hofmeister – nem at anvende, svær at forstå

    23.06.2025

  • Udvinding af fødevareproteiner fra kløvergræs ved membranteknologi

    17.06.2025

  • Trinatriumhexafluo… hvad for noget?

    09.06.2025

  • Prisen på grisen: Hvad koster oprensning af beskidt CO2?

    02.06.2025

  • Der er brug for lange måleserier af miljøparametre

    26.05.2025

  • Chemical ionization mass spectrometry in atmospheric studies

    19.05.2025

  • Gamle processer, nye muligheder: Nyt kemisk-biologisk koncept til CO2-fangst og omdannelse

    14.05.2025

  • Centrotherm clean solutions bliver til Pfeiffer Vacuum+Fab Solutions

    14.05.2025

Alle nyheder ›

Læs Dansk Kemi online

Annoncering i Dansk Kemi

KONTAKT

TechMedia A/S
Naverland 35
DK - 2600 Glostrup
www.techmedia.dk
Telefon: +45 43 24 26 28
E-mail: info@techmedia.dk
Privatlivspolitik
Cookiepolitik